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Physical Constants

Name Symbol Value Unit

Number π π 3.14159265358979323846
Number e e 2.71828182845904523536

Euler’s constant γ = lim
n→∞

(
n∑

k=1

1/k − ln(n)
)
= 0.5772156649

Elementary charge e 1.60217733 · 10−19 C
Gravitational constant G, κ 6.67259 · 10−11 m3kg−1s−2

Fine-structure constant α = e2/2hcε0 ≈ 1/137
Speed of light in vacuum c 2.99792458 · 108 m/s (def)
Permittivity of the vacuum ε0 8.854187 · 10−12 F/m
Permeability of the vacuum µ0 4π · 10−7 H/m
(4πε0)−1 8.9876 · 109 Nm2C−2

Planck’s constant h 6.6260755 · 10−34 Js
Dirac’s constant h̄ = h/2π 1.0545727 · 10−34 Js
Bohr magneton µB = eh̄/2me 9.2741 · 10−24 Am2

Bohr radius a0 0.52918 Å
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Wien’s constant kW 2.8978 · 10−3 mK
Molar gasconstant R 8.31441 J·mol−1·K−1

Avogadro’s constant NA 6.0221367 · 1023 mol−1

Boltzmann’s constant k = R/NA 1.380658 · 10−23 J/K

Electron mass me 9.1093897 · 10−31 kg
Proton mass mp 1.6726231 · 10−27 kg
Neutron mass mn 1.674954 · 10−27 kg
Elementary mass unit mu = 1

12m(
12
6 C) 1.6605656 · 10−27 kg

Nuclear magneton µN 5.0508 · 10−27 J/T

Diameter of the Sun D� 1392 · 106 m
Mass of the Sun M� 1.989 · 1030 kg
Rotational period of the Sun T� 25.38 days
Radius of Earth RA 6.378 · 106 m
Mass of Earth MA 5.976 · 1024 kg
Rotational period of Earth TA 23.96 hours
Earth orbital period Tropical year 365.24219879 days
Astronomical unit AU 1.4959787066 · 1011 m
Light year lj 9.4605 · 1015 m
Parsec pc 3.0857 · 1016 m
Hubble constant H ≈ (75± 25) km·s−1·Mpc−1



Chapter 1

Mechanics

1.1 Point-kinetics in a fixed coordinate system

1.1.1 Definitions

The position �r, the velocity �v and the acceleration �a are defined by: �r = (x, y, z), �v = (ẋ, ẏ, ż), �a = (ẍ, ÿ, z̈).
The following holds:

s(t) = s0 +
∫
|�v(t)|dt ; �r(t) = �r0 +

∫
�v(t)dt ; �v(t) = �v0 +

∫
�a(t)dt

When the acceleration is constant this gives: v(t) = v0 + at and s(t) = s0 + v0t+ 1
2at

2.
For the unit vectors in a direction⊥ to the orbit �e t and parallel to it �en holds:

�et =
�v

|�v| =
d�r

ds
�̇et =

v

ρ
�en ; �en =

�̇et

|�̇et|
For the curvaturek and the radius of curvatureρ holds:

�k =
d�et
ds

=
d2�r

ds2
=
∣∣∣∣dϕds
∣∣∣∣ ; ρ =

1
|k|

1.1.2 Polar coordinates

Polar coordinates are defined by: x = r cos(θ), y = r sin(θ). So, for the unit coordinate vectors holds:
�̇er = θ̇�eθ , �̇eθ = −θ̇�er

The velocity and the acceleration are derived from: �r = r�e r, �v = ṙ�er+ rθ̇�eθ, �a = (r̈− rθ̇2)�er+(2ṙθ̇+ rθ̈)�eθ.

1.2 Relative motion

For the motion of a point D w.r.t. a point Q holds: �rD = �rQ +
�ω × �vQ

ω2
with �QD = �rD − �rQ and ω = θ̇.

Further holds: α = θ̈. ′ means that the quantity is defined in a moving system of coordinates. In a moving
system holds:
�v = �vQ + �v ′ + �ω × �r ′ and �a = �aQ + �a ′ + �α× �r ′ + 2�ω × �v ′ + �ω × (�ω × �r ′)
with �ω × (�ω × �r ′) = −ω2�r ′

n

1.3 Point-dynamics in a fixed coordinate system

1.3.1 Force, (angular)momentum and energy

Newton’s 2nd law connects the force on an object and the resulting acceleration of the object where the mo-
mentumis given by �p = m�v:

�F (�r, �v, t) =
d�p

dt
=

d(m�v )
dt

= m
d�v

dt
+ �v

dm

dt

m=const= m�a
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Newton’s 3rd law is given by: �Faction = −�Freaction.

For the power P holds: P = Ẇ = �F ·�v. For the total energy W , the kinetic energy T and the potential energy
U holds: W = T + U ; Ṫ = −U̇ with T = 1

2mv2.

The kick �S is given by: �S = ∆�p =
∫

�Fdt

The work A, delivered by a force, is A =

2∫
1

�F · d�s =
2∫
1

F cos(α)ds

The torque �τ is related to the angular momentum �L: �τ = �̇L = �r × �F ; and
�L = �r × �p = m�v × �r, |�L| = mr2ω. The following equation is valid:

τ = −∂U

∂θ

Hence, the conditions for a mechanical equilibrium are:
∑ �Fi = 0 and

∑
�τi = 0.

The force of frictionis usually proportional to the force perpendicular to the surface, except when the motion
starts, when a threshold has to be overcome: F fric = f · Fnorm · �et.

1.3.2 Conservative force fields

A conservative force can be written as the gradient of a potential: �Fcons = −�∇U . From this follows that
∇× �F = �0. For such a force field also holds:∮

�F · d�s = 0 ⇒ U = U0 −
r1∫

r0

�F · d�s

So the work delivered by a conservative force field depends not on the trajectory covered but only on the
starting and ending points of the motion.

1.3.3 Gravitation

The Newtonian law of gravitation is (in GRT one also uses κ instead of G):

�Fg = −G
m1m2
r2

�er

The gravitational potential is then given by V = −Gm/r. From Gauss law it then follows: ∇ 2V = 4πG3.

1.3.4 Orbital equations

If V = V (r) one can derive from the equations of Lagrange for φ the conservation of angular momentum:

∂L
∂φ

=
∂V

∂φ
= 0⇒ d

dt
(mr2φ) = 0⇒ Lz = mr2φ = constant

For the radial position as a function of time can be found that:(
dr

dt

)2
=
2(W − V )

m
− L2

m2r2

The angular equation is then:

φ− φ0 =

r∫
0

[
mr2

L

√
2(W − V )

m
− L2

m2r2

]−1
dr

r−2field= arccos

(
1 +

1
r − 1

r0
1
r0
+ km/L2z

)

If F = F (r): L =constant, if F is conservative: W =constant, if �F ⊥ �v then∆T = 0 and U = 0.
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Kepler’s orbital equations

In a force field F = kr−2, the orbits are conic sections with the origin of the force in one of the foci (Kepler’s
1st law). The equation of the orbit is:

r(θ) =
5

1 + ε cos(θ − θ0)
, or: x2 + y2 = (5− εx)2

with

5 =
L2

Gµ2Mtot
; ε2 = 1 +

2WL2

G2µ3M2
tot

= 1− 5

a
; a =

5

1− ε2
=

k

2W
a is half the length of the long axis of the elliptical orbit in case the orbit is closed. Half the length of the short
axis is b =

√
a5. ε is the excentricityof the orbit. Orbits with an equal ε are of equal shape. Now, 5 types of

orbits are possible:

1. k < 0 and ε = 0: a circle.

2. k < 0 and 0 < ε < 1: an ellipse.

3. k < 0 and ε = 1: a parabole.

4. k < 0 and ε > 1: a hyperbole, curved towards the centre of force.

5. k > 0 and ε > 1: a hyperbole, curved away from the centre of force.

Other combinations are not possible: the total energy in a repulsive force field is always positive so ε > 1.

If the surface between the orbit covered between t1 and t2 and the focus C around which the planet moves is
A(t1, t2), Kepler’s 2nd law is

A(t1, t2) =
LC
2m

(t2 − t1)

Kepler’s 3rd law is, with T the period and Mtot the total mass of the system:

T 2

a3
=

4π2

GMtot

1.3.5 The virial theorem

The virial theorem for one particle is:

〈m�v · �r〉 = 0⇒ 〈T 〉 = − 12
〈
�F · �r
〉
= 1
2

〈
r
dU

dr

〉
= 1
2n 〈U〉 if U = − k

rn

The virial theorem for a collection of particles is:

〈T 〉 = − 12
〈 ∑
particles

�Fi · �ri +
∑
pairs

�Fij · �rij
〉

These propositions can also be written as: 2Ekin + Epot = 0.

1.4 Point dynamics in a moving coordinate system

1.4.1 Apparent forces

The total force in a moving coordinate system can be found by subtracting the apparent forces from the forces
working in the reference frame: �F ′ = �F − �Fapp. The different apparent forces are given by:

1. Transformation of the origin: For = −m�aa

2. Rotation: �Fα = −m�α× �r ′

3. Coriolis force: Fcor = −2m�ω × �v

4. Centrifugal force: �Fcf = mω2�rn
′ = −�Fcp ; �Fcp = −mv2

r
�er
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1.4.2 Tensor notation

Transformation of the Newtonian equations of motion to xα = xα(x) gives:

dxα

dt
=

∂xα

∂x̄β
dx̄β

dt
;

The chain rule gives:

d

dt

dxα

dt
=

d2xα

dt2
=

d

dt

(
∂xα

∂x̄β
dx̄β

dt

)
=

∂xα

∂x̄β
d2x̄β

dt2
+

dx̄β

dt

d

dt

(
∂xα

∂x̄β

)
so:

d

dt

∂xα

∂x̄β
=

∂

∂x̄γ
∂xα

∂x̄β
dx̄γ

dt
=

∂2xα

∂x̄β∂x̄γ
dx̄γ

dt

This leads to:
d2xα

dt2
=

∂xα

∂x̄β
d2x̄β

dt2
+

∂2xα

∂x̄β∂x̄γ
dx̄γ

dt

(
dx̄β

dt

)
Hence the Newtonian equation of motion

m
d2xα

dt2
= Fα

will be transformed into:

m

{
d2xα

dt2
+ Γαβγ

dxβ

dt

dxγ

dt

}
= Fα

The apparent forces are taken from he origin to the effect side in the way Γ α
βγ

dxβ

dt

dxγ

dt
.

1.5 Dynamics of masspoint collections

1.5.1 The centre of mass

The velocity w.r.t. the centre of mass �R is given by �v− �̇R. The coordinates of the centre of mass are given by:

�rm =
∑

mi�ri∑
mi

In a 2-particle system, the coordinates of the centre of mass are given by:

�R =
m1�r1 +m2�r2
m1 +m2

With �r = �r1 − �r2, the kinetic energy becomes: T = 1
2MtotṘ

2 + 1
2µṙ

2, with the reduced massµ given by:
1
µ
=

1
m1

+
1
m2

The motion within and outside the centre of mass can be separated:

�̇Loutside = �τoutside ; �̇Linside = �τinside

�p = m�vm ; �Fext = m�am ; �F12 = µ�u

1.5.2 Collisions

With collisions, where B are the coordinates of the collision and C an arbitrary other position, holds: �p = m�vm
is constant, and T = 1

2m�v 2m is constant. The changes in the relative velocitiescan be derived from: �S = ∆�p =
µ(�vaft − �vbefore). Further holds∆�LC = �CB× �S, �p ‖ �S =constant and �L w.r.t. B is constant.
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1.6 Dynamics of rigid bodies

1.6.1 Moment of Inertia

The angular momentum in a moving coordinate system is given by:

�L′ = I�ω + �L′
n

where I is the moment of inertiawith respect to a central axis, which is given by:

I =
∑
i

mi�ri
2 ; T ′ =Wrot = 1

2ωIij�ei�ej =
1
2Iω

2

or, in the continuous case:

I =
m

V

∫
r′2ndV =

∫
r′2ndm

Further holds:
Li = Iijωj ; Iii = Ii ; Iij = Iji = −

∑
k

mkx
′
ix

′
j

Steiner’s theorem is: Iw.r.t.D = Iw.r.t.C +m(DM)2 if axis C ‖ axis D.

Object I Object I

Cavern cylinder I = mR2 Massive cylinder I = 1
2mR2

Disc, axis in plane disc through m I = 1
4mR2 Halter I = 1

2µR
2

Cavern sphere I = 2
3mR2 Massive sphere I = 2

5mR2

Bar, axis ⊥ through c.o.m. I = 1
12ml2 Bar, axis ⊥ through end I = 1

3ml2

Rectangle, axis ⊥ plane thr. c.o.m. I = 1
12m(a

2 + b2) Rectangle, axis ‖ b thr. m I = ma2

1.6.2 Principal axes

Each rigid body has (at least) 3 principal axes which stand ⊥ to each other. For a principal axis holds:

∂I

∂ωx
=

∂I

∂ωy
=

∂I

∂ωz
= 0 so L′

n = 0

The following holds: ω̇k = −aijkωiωj with aijk =
Ii − Ij

Ik
if I1 ≤ I2 ≤ I3.

1.6.3 Time dependence

For torque of force �τ holds:

�τ ′ = Iθ̈ ;
d′′�L′

dt
= �τ ′ − �ω × �L′

The torque �T is defined by: �T = �F × �d.

1.7 Variational Calculus, Hamilton and Lagrange mechanics

1.7.1 Variational Calculus

Starting with:

δ

b∫
a

L(q, q̇, t)dt = 0 with δ(a) = δ(b) = 0 and δ

(
du

dx

)
=

d

dx
(δu)
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the equations of Lagrange can be derived:
d

dt

∂L
∂q̇i

=
∂L
∂qi

When there are additional conditions applying to the variational problem δJ(u) = 0 of the type
K(u) =constant, the new problem becomes: δJ(u)− λδK(u) = 0.

1.7.2 Hamilton mechanics

The Lagrangianis given by: L = ∑T (q̇i) − V (qi). The Hamiltonianis given by: H =
∑

q̇ipi − L. In 2
dimensions holds: L = T − U = 1

2m(ṙ
2 + r2φ̇2)− U(r, φ).

If the used coordinates are canonicalthe Hamilton equations are the equations of motion for the system:

dqi
dt

=
∂H

∂pi
;

dpi
dt

= −∂H

∂qi

Coordinates are canonical if the following holds: {q i, qj} = 0, {pi, pj} = 0, {qi, pj} = δij where {, } is the
Poisson bracket:

{A,B} =
∑
i

[
∂A

∂qi

∂B

∂pi
− ∂A

∂pi

∂B

∂qi

]

The Hamiltonian of a Harmonic oscillator is given by H(x, p) = p2/2m + 1
2mω2x2. With new coordinates

(θ, I), obtained by the canonical transformation x =
√
2I/mω cos(θ) and p = −√2Imω sin(θ), with inverse

θ = arctan(−p/mωx) and I = p2/2mω + 1
2mωx2 it follows: H(θ, I) = ωI .

The Hamiltonian of a charged particle with charge q in an external electromagnetic field is given by:

H =
1
2m

(
�p− q �A

)2
+ qV

This Hamiltonian can be derived from the Hamiltonian of a free particle H = p 2/2m with the transformations
�p → �p − q �A and H → H − qV . This is elegant from a relativistic point of view: this is equivalent to the
transformation of the momentum 4-vector pα → pα − qAα. A gauge transformation on the potentials Aα

corresponds with a canonical transformation, which make the Hamilton equations the equations of motion for
the system.

1.7.3 Motion around an equilibrium, linearization

For natural systems around equilibrium the following equations are valid:(
∂V

∂qi

)
0

= 0 ; V (q) = V (0) + Vikqiqk with Vik =
(

∂2V

∂qi∂qk

)
0

With T = 1
2 (Mik q̇iq̇k) one receives the set of equations Mq̈ + V q = 0. If qi(t) = ai exp(iωt) is substituted,

this set of equations has solutions if det(V − ω2M) = 0. This leads to the eigenfrequencies of the problem:

ω2k =
aTk V ak
aTkMak

. If the equilibrium is stable holds: ∀k that ω2k > 0. The general solution is a superposition if

eigenvibrations.

1.7.4 Phase space, Liouville’s equation

In phase space holds:

∇ =

(∑
i

∂

∂qi
,
∑
i

∂

∂pi

)
so ∇ · �v =

∑
i

(
∂

∂qi

∂H

∂pi
− ∂

∂pi

∂H

∂qi

)
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If the equation of continuity, ∂t3+∇ · (3�v ) = 0 holds, this can be written as:

{3,H}+ ∂3

∂t
= 0

For an arbitrary quantity A holds:
dA

dt
= {A,H}+ ∂A

∂t

Liouville’s theorem can than be written as:

d3

dt
= 0 ; or:

∫
pdq = constant

1.7.5 Generating functions

Starting with the coordinate transformation:{
Qi = Qi(qi, pi, t)
Pi = Pi(qi, pi, t)

one can derive the following Hamilton equations with the new Hamiltonian K:

dQi

dt
=

∂K

∂Pi
;

dPi

dt
= − ∂K

∂Qi

Now, a distinction between 4 cases can be made:

1. If piq̇i −H = PiQi −K(Pi, Qi, t)− dF1(qi, Qi, t)
dt

, the coordinates follow from:

pi =
∂F1
∂qi

; Pi = −∂F1
∂Qi

; K = H +
∂F1
∂t

2. If piq̇i −H = −ṖiQi −K(Pi, Qi, t) +
dF2(qi, Pi, t)

dt
, the coordinates follow from:

pi =
∂F2
∂qi

; Qi =
∂F2
∂Pi

; K = H +
∂F2
∂t

3. If −ṗiqi −H = PiQ̇i −K(Pi, Qi, t) +
dF3(pi, Qi, t)

dt
, the coordinates follow from:

qi = −∂F3
∂pi

; Pi = −∂F3
∂Qi

; K = H +
∂F3
∂t

4. If −ṗiqi −H = −PiQi −K(Pi, Qi, t) +
dF4(pi, Pi, t)

dt
, the coordinates follow from:

qi = −∂F4
∂pi

; Qi =
∂F4
∂Pi

; K = H +
∂F4
∂t

The functions F1, F2, F3 and F4 are called generating functions.



Chapter 2

Electricity & Magnetism

2.1 The Maxwell equations

The classical electromagnetic field can be described by the Maxwell equations. Those can be written both as
differential and integral equations:∫∫

© ( �D · �n )d2A = Qfree,included ∇ · �D = ρfree∫∫
© ( �B · �n )d2A = 0 ∇ · �B = 0∮

�E · d�s = −dΦ
dt

∇× �E = −∂ �B

∂t∮
�H · d�s = Ifree,included+

dΨ
dt

∇× �H = �Jfree +
∂ �D

∂t

For the fluxes holds: Ψ =
∫∫

( �D · �n )d2A, Φ =
∫∫

( �B · �n )d2A.

The electric displacement �D, polarization �P and electric field strength �E depend on each other according to:

�D = ε0 �E + �P = ε0εr �E, �P =
∑

�p0/Vol, εr = 1 + χe, with χe =
np20
3ε0kT

The magnetic field strength �H , the magnetization �M and the magnetic flux density �B depend on each other
according to:

�B = µ0( �H + �M) = µ0µr �H, �M =
∑

�m/Vol, µr = 1 + χm, with χm =
µ0nm

2
0

3kT

2.2 Force and potential

The force and the electric field between 2 point charges are given by:

�F12 =
Q1Q2
4πε0εrr2

�er ; �E =
�F

Q

The Lorentzforce is the force which is felt by a charged particle that moves through a magnetic field. The
origin of this force is a relativistic transformation of the Coulomb force: �FL = Q(�v × �B ) = l(�I × �B ).

The magnetic field in point P which results from an electric current is given by the law of Biot-Savart, also
known as the law of Laplace. In here, d�l ‖ �I and �r points from d�l to P :

d �BP =
µ0I

4πr2
d�l × �er

If the current is time-dependent one has to take retardationinto account: the substitution I(t) → I(t − r/c)
has to be applied.

The potentials are given by: V12 = −
2∫
1

�E · d�s and �A = 1
2
�B × �r.
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Here, the freedom remains to apply a gauge transformation. The fields can be derived from the potentials as
follows:

�E = −∇V − ∂ �A

∂t
, �B = ∇× �A

Further holds the relation: c2 �B = �v × �E.

2.3 Gauge transformations

The potentials of the electromagnetic fields transform as follows when a gauge transformation is applied:


�A′ = �A−∇f

V ′ = V +
∂f

∂t

so the fields �E and �B do not change. This results in a canonical transformation of the Hamiltonian. Further,
the freedom remains to apply a limiting condition. Two common choices are:

1. Lorentz-gauge: ∇· �A+ 1
c2

∂V

∂t
= 0. This separates the differential equations for �A and V : ✷V = − ρ

ε0
,

✷ �A = −µ0 �J .

2. Coulomb gauge: ∇ · �A = 0. If ρ = 0 and �J = 0 holds V = 0 and follows �A from ✷ �A = 0.

2.4 Energy of the electromagnetic field

The energy density of the electromagnetic field is:

dW

dVol
= w =

∫
HdB +

∫
EdD

The energy density can be expressed in the potentials and currents as follows:

wmag = 1
2

∫
�J · �Ad3x , wel = 1

2

∫
ρV d3x

2.5 Electromagnetic waves

2.5.1 Electromagnetic waves in vacuum

The wave equation ✷Ψ(�r, t) = −f(�r, t) has the general solution, with c = (ε0µ0)−1/2:

Ψ(�r, t) =
∫

f(�r, t− |�r − �r ′|/c)
4π|�r − �r ′| d3r′

If this is written as: �J(�r, t) = �J(�r ) exp(−iωt) and �A(�r, t) = �A(�r ) exp(−iωt) with:

�A(�r ) =
µ

4π

∫
�J(�r ′)

exp(ik|�r − �r ′|)
|�r − �r ′| d3�r ′ , V (�r ) =

1
4πε

∫
ρ(�r ′)

exp(ik|�r − �r ′|)
|�r − �r ′| d3�r ′

A derivation via multipole expansion will show that for the radiated energy holds, if d, λ � r:

dP

dΩ
=

k2

32π2ε0c

∣∣∣∣
∫

J⊥(�r ′)ei�k·�rd3r′
∣∣∣∣2

The energy density of the electromagnetic wave of a vibrating dipole at a large distance is:

w = ε0E
2 =

p20 sin
2(θ)ω4

16π2ε0r2c4
sin2(kr − ωt) , 〈w〉t =

p20 sin
2(θ)ω4

32π2ε0r2c4
, P =

ck4|�p |2
12πε0

The radiated energy can be derived from the Poynting vector�S: �S = �E × �H = cW�ev. The irradianceis the
time-averaged of the Poynting vector: I = 〈| �S |〉t. The radiation pressure ps is given by ps = (1 + R)|�S |/c,
where R is the coefficient of reflection.
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2.5.2 Electromagnetic waves in matter

The wave equations in matter, with cmat = (εµ)−1/2 the lightspeed in matter, are:(
∇2 − εµ

∂2

∂t2
− µ

ρ

∂

∂t

)
�E = 0 ,

(
∇2 − εµ

∂2

∂t2
− µ

ρ

∂

∂t

)
�B = 0

give, after substitution of monochromatic plane waves: �E = E exp(i(�k ·�r−ωt)) and �B = B exp(i(�k ·�r−ωt))
the dispersion relation:

k2 = εµω2 +
iµω

ρ

The first term arises from the displacement current, the second from the conductance current. If k is written in
the form k := k′ + ik′′ it follows that:

k′ = ω
√
1
2εµ

√√√√1 +
√
1 +

1
(ρεω)2

and k′′ = ω
√
1
2εµ

√√√√−1 +
√
1 +

1
(ρεω)2

This results in a damped wave: �E = E exp(−k′′�n ·�r ) exp(i(k′�n ·�r−ωt)). If the material is a good conductor,

the wave vanishes after approximately one wavelength, k = (1 + i)
√

µω

2ρ
.

2.6 Multipoles

Because
1

|�r − �r ′| =
1
r

∞∑
0

(
r′

r

)l
Pl(cos θ) the potential can be written as: V =

Q

4πε

∑
n

kn
rn

For the lowest-order terms this results in:

• Monopole: l = 0, k0 =
∫
ρdV

• Dipole: l = 1, k1 =
∫
r cos(θ)ρdV

• Quadrupole: l = 2, k2 = 1
2

∑
i

(3z2i − r2i )

1. The electric dipole: dipole moment: �p = Ql�e, where �e goes from ⊕ to �, and �F = (�p · ∇) �Eext, and
W = −�p · �Eout.
Electric field: �E ≈ Q

4πεr3

(
3�p · �r
r2

− �p

)
. The torque is: �τ = �p× �Eout

2. The magnetic dipole: dipole moment: if r � √
A: �µ = �I × (A�e⊥), �F = (�µ · ∇) �Bout

|µ| = mv2⊥
2B

, W = −�µ× �Bout

Magnetic field: �B =
−µ

4πr3

(
3µ · �r
r2

− �µ

)
. The moment is: �τ = �µ× �Bout

2.7 Electric currents

The continuity equation for charge is:
∂ρ

∂t
+∇ · �J = 0. The electric currentis given by:

I =
dQ

dt
=
∫∫

( �J · �n )d2A

For most conductors holds: �J = �E/ρ, where ρ is the resistivity.
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If the flux enclosed by a conductor changes this results in an induced voltageV ind = −N
dΦ
dt

. If the current

flowing through a conductor changes, this results in a self-inductance which opposes the original change:

Vselfind = −L
dI

dt
. If a conductor encloses a flux Φ holds: Φ = LI .

The magnetic induction within a coil is approximated by: B =
µNI√
l2 + 4R2

where l is the length, R the radius

and N the number of coils. The energy contained within a coil is given by W = 1
2LI

2 and L = µN 2A/l.

The capacityis defined by: C = Q/V . For a capacitor holds: C = ε0εrA/d where d is the distance between
the plates and A the surface of one plate. The electric field strength between the plates is E = σ/ε 0 = Q/ε0A
where σ is the surface charge. The accumulated energy is given by W = 1

2CV 2. The current through a

capacity is given by I = −C
dV

dt
.

For most PTC resistors holds approximately: R = R0(1 + αT ), where R0 = ρl/A. For a NTC holds:
R(T ) = C exp(−B/T ) where B and C depend only on the material.

If a current flows through two different, connecting conductors x and y, the contact area will heat up or cool
down, depending on the direction of the current: the Peltier effect. The generated or removed heat is given by:
W = ΠxyIt. This effect can be amplified with semiconductors.

The thermic voltagebetween 2 metals is given by: V = γ(T − T0). For a Cu-Konstantane connection holds:
γ ≈ 0.2− 0.7 mV/K.

In an electrical net with only stationary currents, Kirchhoff ’s equations apply: for a knot holds:
∑

In = 0,
along a closed path holds:

∑
Vn =

∑
InRn = 0.

2.8 Depolarizing field

If a dielectric material is placed in an electric or magnetic field, the field strength within and outside the
material will change because the material will be polarized or magnetized. If the medium has an ellipsoidal
shape and one of the principal axes is parallel with the external field �E0 or �B0 then the depolarizing is field
homogeneous.

�Edep = �Emat − �E0 = −N
�P

ε0
�Hdep = �Hmat − �H0 = −N �M

N is a constant depending only on the shape of the object placed in the field, with 0 ≤ N ≤ 1. For a few
limiting cases of an ellipsoid holds: a thin plane: N = 1, a long, thin bar: N = 0, a sphere: N = 1

3 .

2.9 Mixtures of materials

The average electric displacement in a material which is inhomogenious on a mesoscopic scale is given by:

〈D〉 = 〈εE〉 = ε∗ 〈E〉 where ε∗ = ε1

(
1− φ2(1− x)

Φ(ε∗/ε2)

)−1
where x = ε1/ε2. For a sphere holds: Φ =

1
3 +

2
3x. Further holds: (∑

i

φi
εi

)−1
≤ ε∗ ≤

∑
i

φiεi
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Relativity

3.1 Special relativity

3.1.1 The Lorentz transformation

The Lorentz transformation (�x ′, t′) = (�x ′(�x, t), t′(�x, t)) leaves the wave equation invariant if c is invariant:

∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
− 1

c2
∂2

∂t2
=

∂2

∂x′2 +
∂2

∂y′2
+

∂2

∂z′2
− 1

c2
∂2

∂t′2

This transformation can also be found when ds2 = ds′2 is demanded. The general form of the Lorentz
transformation is given by:

�x ′ = �x+
(γ − 1)(�x · �v )�v

|v|2 − γ�vt , t′ = γ

(
t− �x · �v

c2

)

where

γ =
1√

1− v2

c2

The velocity difference �v ′ between two observers transforms according to:

�v ′ =
(
γ

(
1− �v1 · �v2

c2

))−1(
�v2 + (γ − 1)�v1 · �v2

v21
�v1 − γ�v1

)

If the velocity is parallel to the x-axis, this becomes y ′ = y, z′ = z and:

x′ = γ(x− vt) , x = γ(x′ + vt′)

t′ = γ
(
t− xv

c2

)
, t = γ

(
t′ +

x′v
c2

)
, v′ =

v2 − v1

1− v1v2
c2

If �v = v�ex holds:

p′x = γ

(
px − βW

c

)
, W ′ = γ(W − vpx)

With β = v/c the electric field of a moving charge is given by:

�E =
Q

4πε0r2
(1 − β2)�er

(1− β2 sin2(θ))3/2

The electromagnetic field transforms according to:

�E′ = γ( �E + �v × �B ) , �B′ = γ

(
�B − �v × �E

c2

)

Length, mass and time transform according to: ∆t r = γ∆t0, mr = γm0, lr = l0/γ, with 0 the quantities
in a co-moving reference frame and r the quantities in a frame moving with velocity v w.r.t. it. The proper
time τ is defined as: dτ 2 = ds2/c2, so ∆τ = ∆t/γ. For energy and momentum holds: W = m rc

2 = γW0,
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W 2 = m20c
4 + p2c2. p = mrv = γm0v = Wv/c2, and pc = Wβ where β = v/c. The force is definedby

�F = d�p/dt.

4-vectors have the property that their modulus is independent of the observer: their components canchange
after a coordinate transformation but not their modulus. The difference of two 4-vectors transforms also as

a 4-vector. The 4-vector for the velocity is given by U α =
dxα

dτ
. The relation with the “common” velocity

ui := dxi/dt is: Uα = (γui, icγ). For particles with nonzero restmass holds: U αUα = −c2, for particles
with zero restmass (so with v = c) holds: U αUα = 0. The 4-vector for energy and momentum is given by:
pα = m0U

α = (γpi, iW/c). So: pαpα = −m20c
2 = p2 −W 2/c2.

3.1.2 Red and blue shift

There are three causes of red and blue shifts:

1. Motion: with �ev · �er = cos(ϕ) follows:
f ′

f
= γ

(
1− v cos(ϕ)

c

)
.

This can give both red- and blueshift, also ⊥ to the direction of motion.

2. Gravitational redshift:
∆f

f
=

κM

rc2
.

3. Redshift because the universe expands, resulting in e.g. the cosmic background radiation:
λ0
λ1
=

R0
R1

.

3.1.3 The stress-energy tensor and the field tensor

The stress-energy tensor is given by:

Tµν = (3c2 + p)uµuν + pgµν +
1
c2
(
FµαF

α
ν +

1
4gµνF

αβFαβ

)
The conservation laws can than be written as: ∇νT

µν = 0. The electromagnetic field tensor is given by:

Fαβ =
∂Aβ

∂xα
− ∂Aα

∂xβ

with Aµ := ( �A, iV/c) and Jµ := ( �J, icρ). The Maxwell equations can than be written as:

∂νF
µν = µ0J

µ , ∂λFµν + ∂µFνλ + ∂νFλµ = 0

The equations of motion for a charged particle in an EM field become with the field tensor:

dpα
dτ

= qFαβu
β

3.2 General relativity

3.2.1 Riemannian geometry, the Einstein tensor

The basic principles of general relativity are:

1. The geodesic postulate: free falling particles move along geodesics of space-time with the proper time
τ or arc length s as parameter. For particles with zero rest mass (photons), the use of a free parameter is
required because for them holds ds = 0. From δ

∫
ds = 0 the equations of motion can be derived:

d2xα

ds2
+ Γαβγ

dxβ

ds

dxγ

ds
= 0
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2. The principle of equivalence: inertial mass ≡ gravitational mass ⇒ gravitation is equivalent with a
curved space-time were particles move along geodesics.

3. By a proper choice of the coordinate system it is possible to make the metric locally flat in each point
xi: gαβ(xi) = ηαβ :=diag(−1, 1, 1, 1).

The Riemann tensoris defined as: Rµ
ναβT

ν := ∇α∇βT
µ−∇β∇αT

µ, where the covariant derivative is given
by ∇ja

i = ∂ja
i + Γijka

k and ∇jai = ∂jai − Γkijak. Here,

Γijk =
gil

2

(
∂glj
∂xk

+
∂glk
∂xj

− ∂g
jk

∂xl

)
, for Euclidean spaces this reduces to: Γijk =

∂2x̄l

∂xj∂xk
∂xi

∂x̄l
,

are the Christoffel symbols. For a second-order tensor holds: [∇α,∇β ]T µ
ν = Rµ

σαβT
σ
ν + Rσ

ναβT
µ
σ , ∇ka

i
j =

∂ka
i
j−Γlkjail+Γiklalj ,∇kaij = ∂kaij−Γlkialj−Γlkjajl and∇ka

ij = ∂ka
ij+Γikla

lj+Γjkla
il. The following

holds: Rα
βµν = ∂µΓαβν − ∂νΓαβµ + Γ

α
σµΓσβν − ΓασνΓσβµ.

The Ricci tensoris a contraction of the Riemann tensor: Rαβ := Rµ
αµβ , which is symmetric: Rαβ = Rβα.

The Bianchi identitiesare: ∇λRαβµν +∇νRαβλµ +∇µRαβνλ = 0.

The Einstein tensoris given by: Gαβ := Rαβ − 1
2g

αβR, where R := Rα
α is the Ricci scalar, for which

holds: ∇βGαβ = 0. With the variational principle δ
∫
(L(gµν) − Rc2/16πκ)

√|g|d4x = 0 for variations
gµν → gµν + δgµν the Einstein field equationscan be derived:

Gαβ =
8πκ
c2

Tαβ , which can also be written as Rαβ =
8πκ
c2
(Tαβ − 1

2gαβT
µ
µ )

For empty space this is equivalent to Rαβ = 0. The equation Rαβµν = 0 has as only solution a flat space.

The Einstein equations are 10 independent equations, which are of second order in g µν . From this, the Laplace
equation from Newtonian gravitation can be derived by stating: g µν = ηµν + hµν , where |h| � 1. In the
stationary case, this results in ∇2h00 = 8πκ3/c2.

The most general form of the field equations is: Rαβ − 1
2gαβR+ Λgαβ =

8πκ
c2

Tαβ

where Λ is the cosmological constant. This constant plays a role in inflatory models of the universe.

3.2.2 The line element

The metric tensorin an Euclidean space is given by: g ij =
∑
k

∂x̄k

∂xi
∂x̄k

∂xj
.

In general holds: ds2 = gµνdx
µdxν . In special relativity this becomes ds2 = −c2dt2 + dx2 + dy2 + dz2.

This metric, ηµν :=diag(−1, 1, 1, 1), is called the Minkowski metric.

The external Schwarzschild metricapplies in vacuum outside a spherical mass distribution, and is given by:

ds2 =
(
−1 + 2m

r

)
c2dt2 +

(
1− 2m

r

)−1
dr2 + r2dΩ2

Here, m := Mκ/c2 is the geometrical massof an object with mass M , and dΩ2 = dθ2 + sin2 θdϕ2. This
metric is singular for r = 2m = 2κM/c2. If an object is smaller than its event horizon 2m, that implies that
its escape velocity is > c, it is called a black hole. The Newtonian limit of this metric is given by:

ds2 = −(1 + 2V )c2dt2 + (1− 2V )(dx2 + dy2 + dz2)

where V = −κM/r is the Newtonian gravitation potential. In general relativity, the components of g µν are
associated with the potentials and the derivatives of gµν with the field strength.

The Kruskal-Szekeres coordinates are used to solve certain problems with the Schwarzschild metric near
r = 2m. They are defined by:
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• r > 2m: 


u =
√

r

2m
− 1 exp

( r

4m

)
cosh
(

t

4m

)

v =
√

r

2m
− 1 exp

( r

4m

)
sinh
(

t

4m

)
• r < 2m: 


u =

√
1− r

2m
exp
( r

4m

)
sinh
(

t

4m

)

v =
√
1− r

2m
exp
( r

4m

)
cosh
(

t

4m

)
• r = 2m: here, the Kruskal coordinates are singular, which is necessary to eliminate the coordinate

singularity there.

The line element in these coordinates is given by:

ds2 = −32m
3

r
e−r/2m(dv2 − du2) + r2dΩ2

The line r = 2m corresponds to u = v = 0, the limit x0 →∞ with u = v and x0 → −∞ with u = −v. The
Kruskal coordinates are only singular on the hyperbole v 2 − u2 = 1, this corresponds with r = 0. On the line
dv = ±du holds dθ = dϕ = ds = 0.

For the metric outside a rotating, charged spherical mass the Newman metric applies:

ds2 =
(
1− 2mr − e2

r2 + a2 cos2 θ

)
c2dt2 −

(
r2 + a2 cos2 θ

r2 − 2mr + a2 − e2

)
dr2 − (r2 + a2 cos2 θ)dθ2 −(

r2 + a2 +
(2mr − e2)a2 sin2 θ

r2 + a2 cos2 θ

)
sin2 θdϕ2 +

(
2a(2mr − e2)
r2 + a2 cos2 θ

)
sin2 θ(dϕ)(cdt)

where m = κM/c2, a = L/Mc and e = κQ/ε0c
2.

A rotating charged black hole has an event horizon with R S = m+
√
m2 − a2 − e2.

Near rotating black holes frame dragging occurs because g tϕ �= 0. For the Kerr metric (e = 0, a �= 0) then
follows that within the surface RE = m+

√
m2 − a2 cos2 θ (de ergosphere) no particle can be at rest.

3.2.3 Planetary orbits and the perihelion shift

To find a planetary orbit, the variational problem δ
∫
ds = 0 has to be solved. This is equivalent to the problem

δ
∫
ds2 = δ

∫
gijdx

idxj = 0. Substituting the external Schwarzschild metric yields for a planetary orbit:

du

dϕ

(
d2u

dϕ2
+ u

)
=

du

dϕ

(
3mu+

m

h2

)
where u := 1/r and h = r2ϕ̇ =constant. The term 3mu is not present in the classical solution. This term can

in the classical case also be found from a potential V (r) = − κM

r

(
1 +

h2

r2

)
.

The orbital equation gives r =constant as solution, or can, after dividing by du/dϕ, be solved with perturbation
theory. In zeroth order, this results in an elliptical orbit: u0(ϕ) = A + B cos(ϕ) with A = m/h2 and B an
arbitrary constant. In first order, this becomes:

u1(ϕ) = A+B cos(ϕ− εϕ) + ε

(
A+

B2

2A
− B2

6A
cos(2ϕ)

)
where ε = 3m2/h2 is small. The perihelion of a planet is the point for which r is minimal, or u maximal.
This is the case if cos(ϕ − εϕ) = 0 ⇒ ϕ ≈ 2πn(1 + ε). For the perihelion shift then follows: ∆ϕ = 2πε =
6πm2/h2 per orbit.
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3.2.4 The trajectory of a photon

For the trajectory of a photon (and for each particle with zero restmass) holds ds 2 = 0. Substituting the
external Schwarzschild metric results in the following orbital equation:

du

dϕ

(
d2u

dϕ2
+ u− 3mu

)
= 0

3.2.5 Gravitational waves

Starting with the approximation gµν = ηµν + hµν for weak gravitational fields and the definition h ′
µν =

hµν − 1
2ηµνh

α
α it follows that ✷h′

µν = 0 if the gauge condition ∂h′
µν/∂x

ν = 0 is satisfied. From this, it
follows that the loss of energy of a mechanical system, if the occurring velocities are� c and for wavelengths
� the size of the system, is given by:

dE

dt
= − G

5c5
∑
i,j

(
d3Qij

dt3

)2

with Qij =
∫
3(xixj − 1

3δijr
2)d3x the mass quadrupole moment.

3.2.6 Cosmology

If for the universe as a whole is assumed:

1. There exists a global time coordinate which acts as x0 of a Gaussian coordinate system,

2. The 3-dimensional spaces are isotrope for a certain value of x 0,

3. Each point is equivalent to each other point for a fixed x 0.

then the Robertson-Walker metriccan be derived for the line element:

ds2 = −c2dt2 +
R2(t)

r20

(
1− kr2

4r20

) (dr2 + r2dΩ2)

For the scalefactorR(t) the following equations can be derived:

2R̈
R
+

Ṙ2 + kc2

R2
= −8πκp

c2
+ Λ and

Ṙ2 + kc2

R2
=
8πκ3
3

+
Λ
3

where p is the pressure and 3 the density of the universe. If Λ = 0 can be derived for the deceleration
parameterq:

q = − R̈R

Ṙ2
=
4πκ3
3H2

where H = Ṙ/R is Hubble’s constant. This is a measure of the velocity with which galaxies far away are
moving away from each other, and has the value≈ (75±25) km·s−1·Mpc−1. This gives 3 possible conditions
for the universe (here, W is the total amount of energy in the universe):

1. Parabolical universe: k = 0, W = 0, q = 1
2 . The expansion velocity of the universe → 0 if t → ∞.

The hereto related critical densityis 3c = 3H2/8πκ.

2. Hyperbolical universe: k = −1, W < 0, q < 1
2 . The expansion velocity of the universe remains

positive forever.

3. Elliptical universe: k = 1, W > 0, q > 1
2 . The expansion velocity of the universe becomes negative

after some time: the universe starts collapsing.
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Oscillations

4.1 Harmonic oscillations

The general form of a harmonic oscillation is: Ψ(t) = Ψ̂ei(ωt±ϕ) ≡ Ψ̂ cos(ωt± ϕ),

where Ψ̂ is the amplitude. A superposition of several harmonic oscillations with the same frequencyresults in
another harmonic oscillation: ∑

i

Ψ̂i cos(αi ± ωt) = Φ̂ cos(β ± ωt)

with:

tan(β) =

∑
i

Ψ̂i sin(αi)∑
i

Ψ̂i cos(αi)
and Φ̂2 =

∑
i

Ψ̂2i + 2
∑
j>i

∑
i

Ψ̂iΨ̂j cos(αi − αj)

For harmonic oscillations holds:
∫

x(t)dt =
x(t)
iω

and
dnx(t)
dtn

= (iω)nx(t).

4.2 Mechanic oscillations

For a construction with a spring with constant C parallel to a damping k which is connected to a mass M , to
which a periodic force F (t) = F̂ cos(ωt) is applied holds the equation of motion mẍ = F (t) − kẋ − Cx.
With complex amplitudes, this becomes −mω2x = F − Cx− ikωx. With ω20 = C/m follows:

x =
F

m(ω20 − ω2) + ikω
, and for the velocity holds: ẋ =

F

i
√
Cmδ + k

where δ =
ω

ω0
− ω0

ω
. The quantity Z = F/ẋ is called the impedanceof the system. The qualityof the system

is given by Q =
√
Cm

k
.

The frequency with minimal |Z| is called velocity resonance frequency. This is equal to ω 0. In the resonance
curve|Z|/√Cm is plotted against ω/ω0. The width of this curve is characterized by the points where |Z(ω)| =
|Z(ω0)|

√
2. In these points holds: R = X and δ = ±Q−1, and the width is 2∆ωB = ω0/Q.

The stiffnessof an oscillating system is given by F/x. The amplitude resonance frequencyωA is the frequency

where iωZ is minimal. This is the case for ωA = ω0

√
1− 1

2Q
2.

The damping frequencyωD is a measure for the time in which an oscillating system comes to rest. It is given

by ωD = ω0

√
1− 1

4Q2
. A weak damped oscillation (k2 < 4mC) dies out after TD = 2π/ωD. For a critical

dampedoscillation (k2 = 4mC) holds ωD = 0. A strong damped oscillation (k2 > 4mC) drops like (if
k2 � 4mC) x(t) ≈ x0 exp(−t/τ).

4.3 Electric oscillations

The impedanceis given by: Z = R + iX . The phase angle is ϕ := arctan(X/R). The impedance of a
resistor is R, of a capacitor 1/iωC and of a self inductor iωL. The quality of a coil is Q = ωL/R. The total
impedance in case several elements are positioned is given by:
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1. Series connection: V = IZ ,

Ztot =
∑
i

Zi , Ltot =
∑
i

Li ,
1

Ctot
=
∑
i

1
Ci

, Q =
Z0
R

, Z = R(1 + iQδ)

2. parallel connection: V = IZ ,

1
Ztot

=
∑
i

1
Zi

,
1

Ltot
=
∑
i

1
Li

, Ctot =
∑
i

Ci , Q =
R

Z0
, Z =

R

1 + iQδ

Here, Z0 =

√
L

C
and ω0 =

1√
LC

.

The power given by a source is given by P (t) = V (t) · I(t), so 〈P 〉 t = V̂eff Îeff cos(∆φ)
= 1
2 V̂ Î cos(φv − φi) = 1

2 Î
2Re(Z) = 1

2 V̂
2Re(1/Z), where cos(∆φ) is the work factor.

4.4 Waves in long conductors

These cables are in use for signal transfer, e.g. coax cable. For them holds: Z 0 =

√
dL

dx

dx

dC
.

The transmission velocity is given by v =

√
dx

dL

dx

dC
.

4.5 Coupled conductors and transformers

For two coils enclosing each others flux holds: if Φ12 is the part of the flux originating from I2 through coil 2
which is enclosed by coil 1, than holds Φ12 =M12I2, Φ21 =M21I1. For the coefficients of mutual induction
Mij holds:

M12 =M21 :=M = k
√

L1L2 =
N1Φ1
I2

=
N2Φ2
I1

∼ N1N2

where 0 ≤ k ≤ 1 is the coupling factor. For a transformer is k ≈ 1. At full load holds:

V1
V2
=

I2
I1
= − iωM

iωL2 +Rload
≈ −
√

L1
L2

= −N1
N2

4.6 Pendulums

The oscillation time T = 1/f , and for different types of pendulums is given by:

• Oscillating spring: T = 2π
√

m/C if the spring force is given by F = C ·∆l.

• Physical pendulum: T = 2π
√

I/τ with τ the moment of force and I the moment of inertia.

• Torsion pendulum: T = 2π
√

I/κ with κ =
2lm

πr4∆ϕ
the constant of torsion and I the moment of inertia.

• Mathematical pendulum: T = 2π
√

l/g with g the acceleration of gravity and l the length of the pendu-
lum.



Chapter 5

Waves

5.1 The wave equation

The general form of the wave equation is: ✷u = 0, or:

∇2u− 1
v2

∂2u

∂t2
=

∂2u

∂x2
+

∂2u

∂y2
+

∂2u

∂z2
− 1

v2
∂2u

∂t2
= 0

where u is the disturbance and v the propagation velocity. In general holds: v = fλ. By definition holds:
kλ = 2π and ω = 2πf .

In principle, there are two types of waves:

1. Longitudinal waves: for these holds �k ‖ �v ‖ �u.

2. Transversal waves: for these holds �k ‖ �v ⊥ �u.

The phase velocityis given by vph = ω/k. The group velocityis given by:

vg =
dω

dk
= vph + k

dvph
dk

= vph

(
1− k

n

dn

dk

)

where n is the refractive index of the medium. If vph does not depend on ω holds: vph = vg. In a dispersive
medium it is possible that vg > vph or vg < vph, and vg · vf = c2. If one wants to transfer information with
a wave, e.g. by modulation of an EM wave, the information travels with the velocity at with a change in the
electromagnetic field propagates. This velocity is often almost equal to the group velocity.

For some media, the propagation velocity follows from:

• Pressure waves in a liquid or gas: v =
√

κ/3, where κ is the modulus of compression.

• For pressure waves in a gas also holds: v =
√

γp/3 =
√

γRT/M .

• Pressure waves in a thin solid bar with diameter << λ: v =
√

E/3

• waves in a string: v =
√

Fspanl/m

• Surface waves on a liquid: v =

√(
gλ

2π
+
2πγ
3λ

)
tanh

(
2πh
λ

)
where h is the depth of the liquid and γ the surface tension. If h� λ holds: v ≈ √

gh.

5.2 Solutions of the wave equation

5.2.1 Plane waves

In n dimensions a harmonic plane wave is defined by:

u(�x, t) = 2nû cos(ωt)
n∑
i=1

sin(kixi)
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The equation for a harmonic traveling plane wave is: u(�x, t) = û cos(�k · �x± ωt+ ϕ)

If waves reflect at the end of a spring this will result in a change in phase. A fixed end gives a phase change of
π/2 to the reflected wave, with boundary condition u(l) = 0. A lose end gives no change in the phase of the
reflected wave, with boundary condition (∂u/∂x) l = 0.

If an observer is moving w.r.t. the wave with a velocity vobs, he will observe a change in frequency: the

Doppler effect. This is given by:
f

f0
=

vf − vobs
vf

.

5.2.2 Spherical waves

When the situation is spherical symmetric, the homogeneous wave equation is given by:

1
v2

∂2(ru)
∂t2

− ∂2(ru)
∂r2

= 0

with general solution:

u(r, t) = C1
f(r − vt)

r
+ C2

g(r + vt)
r

5.2.3 Cylindrical waves

When the situation has a cylindrical symmetry, the homogeneous wave equation becomes:

1
v2

∂2u

∂t2
− 1

r

∂

∂r

(
r
∂u

∂r

)
= 0

This is a Bessel equation, with solutions which can be written as Hankel functions. For sufficient large values
of r these are approximated by:

u(r, t) =
û√
r
cos(k(r ± vt))

5.2.4 The general solution in one dimension

Starting point is the equation:

∂2u(x, t)
∂t2

=
N∑

m=0

(
bm

∂m

∂xm

)
u(x, t)

where bm ∈ IR. Substituting u(x, t) = Aei(kx−ωt) gives two solutions ωj = ωj(k) as dispersion relations.
The general solution is given by:

u(x, t) =

∞∫
−∞

(
a(k)ei(kx−ω1(k)t) + b(k)ei(kx−ω2(k)t)

)
dk

Because in general the frequencies ωj are non-linear in k there is dispersion and the solution cannot be written
any more as a sum of functions depending only on x± vt: the wave front transforms.

5.3 The stationary phase method

Usually the Fourier integrals of the previous section cannot be calculated exactly. If ω j(k) ∈ IR the stationary
phase method can be applied. Assuming that a(k) is only a slowly varying function of k, one can state that the
parts of the k-axis where the phase of kx− ω(k)t changes rapidly will give no net contribution to the integral
because the exponent oscillates rapidly there. The only areas contributing significantly to the integral are areas

with a stationary phase, determined by
d

dk
(kx− ω(k)t) = 0. Now the following approximation is possible:

∞∫
−∞

a(k)ei(kx−ω(k)t)dk ≈
N∑
i=1

√√√√ 2π
d2ω(ki)
dk2

i

exp
[−i 14π + i(kix− ω(ki)t)

]
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5.4 Green functions for the initial-value problem

This method is preferable if the solutions deviate much from the stationary solutions, like point-like excitations.
Starting with the wave equation in one dimension, with ∇2 = ∂2/∂x2 holds: if Q(x, x′, t) is the solution with

initial values Q(x, x′, 0) = δ(x − x′) and
∂Q(x, x′, 0)

∂t
= 0, and P (x, x′, t) the solution with initial values

P (x, x′, 0) = 0 and
∂P (x, x′, 0)

∂t
= δ(x − x′), then the solution of the wave equation with arbitrary initial

conditions f(x) = u(x, 0) and g(x) =
∂u(x, 0)

∂t
is given by:

u(x, t) =

∞∫
−∞

f(x′)Q(x, x′, t)dx′ +

∞∫
−∞

g(x′)P (x, x′, t)dx′

P and Q are called the propagators. They are defined by:

Q(x, x′, t) = 1
2 [δ(x− x′ − vt) + δ(x− x′ + vt)]

P (x, x′, t) =

{ 1
2v

if |x− x′| < vt

0 if |x− x′| > vt

Further holds the relation: Q(x, x′, t) =
∂P (x, x′, t)

∂t

5.5 Waveguides and resonating cavities

The boundary conditions for a perfect conductor can be derived from the Maxwell equations. If �n is a unit
vector⊥ the surface, pointed from 1 to 2, and �K is a surface current density, than holds:

�n · ( �D2 − �D1) = σ �n× ( �E2 − �E1) = 0
�n · ( �B2 − �B1) = 0 �n× ( �H2 − �H1) = �K

In a waveguide holds because of the cylindrical symmetry: �E(�x, t) = �E(x, y)ei(kz−ωt) and �B(�x, t) =
�B(x, y)ei(kz−ωt). From this one can now deduce that, if Bz and Ez are not ≡ 0:

Bx = i

εµω2 − k2

(
k
∂Bz
∂x

− εµω
∂Ez
∂y

)
By = i

εµω2 − k2

(
k
∂Bz
∂y

+ εµω
∂Ez
∂x

)
Ex = i

εµω2 − k2

(
k
∂Ez
∂x

+ εµω
∂Bz
∂y

)
Ey = i

εµω2 − k2

(
k
∂Ez
∂y

− εµω
∂Bz
∂x

)
Now one can distinguish between three cases:

1. Bz ≡ 0: the Transversal Magnetic modes (TM). Boundary condition: E z|surf = 0.

2. Ez ≡ 0: the Transversal Electric modes (TE). Boundary condition:
∂Bz
∂n

∣∣∣∣
surf

= 0.

For the TE and TM modes this gives an eigenvalue problem for E z resp. Bz with boundary conditions:(
∂2

∂x2
+

∂2

∂y2

)
ψ = −γ2ψ with eigenvalues γ2 := εµω2 − k2

This gives a discrete solution ψ! with eigenvalue γ2! : k =
√

εµω2 − γ2! . For ω < ω!, k is imaginary
and the wave is damped. Therefore, ω! is called the cut-off frequency. In rectangular conductors the
following expression can be found for the cut-off frequency for modes TE m,n of TMm,n:

λ! =
2√

(m/a)2 + (n/b)2
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3. Ez and Bz are zero everywhere: the Transversal electromagnetic mode (TEM). Than holds: k =
±ω

√
εµ and vf = vg, just as if here were no waveguide. Further k ∈ IR, so there exists no cut-off

frequency.

In a rectangular, 3 dimensional resonating cavity with edges a, b and c the possible wave numbers are given

by: kx =
n1π

a
, ky =

n2π

b
, kz =

n3π

c
This results in the possible frequencies f = vk/2π in the cavity:

f =
v

2

√
n2x
a2
+

n2y
b2
+

n2z
c2

For a cubic cavity, with a = b = c, the possible number of oscillating modes NL for longitudinal waves is
given by:

NL =
4πa3f3

3v3

Because transversal waves have two possible polarizations holds for them: NT = 2NL.

5.6 Non-linear wave equations

The Van der Polequation is given by:

d2x

dt2
− εω0(1 − βx2)

dx

dt
+ ω20x = 0

βx2 can be ignored for very small values of the amplitude. Substitution of x ∼ e iωt gives: ω = 1
2ω0(iε ±

2
√
1− 1

2ε
2). The lowest-order instabilities grow as 12εω0. While x is growing, the 2nd term becomes larger

and diminishes the growth. Oscillations on a time scale ∼ ω−1
0 can exist. If x is expanded as x = x(0) +

εx(1) + ε2x(2) + · · · and this is substituted one obtains, besides periodic, secular terms∼ εt. If it is assumed
that there exist timescales τn, 0 ≤ τ ≤ N with ∂τn/∂t = εn and if the secular terms are put 0 one obtains:

d

dt

{
1
2

(
dx

dt

)2
+ 1
2ω
2
0x
2

}
= εω0(1 − βx2)

(
dx

dt

)2

This is an energy equation. Energy is conserved if the left-hand side is 0. If x 2 > 1/β, the right-hand side
changes sign and an increase in energy changes into a decrease of energy. This mechanism limits the growth
of oscillations.

The Korteweg-De Vriesequation is given by:

∂u

∂t
+

∂u

∂x
− au

∂u

∂x︸ ︷︷ ︸
non−lin

+ b2
∂3u

∂x3︸ ︷︷ ︸
dispersive

= 0

This equation is for example a model for ion-acoustic waves in a plasma. For this equation, soliton solutions
of the following form exist:

u(x− ct) =
−d

cosh2(e(x− ct))

with c = 1 + 1
3ad and e2 = ad/(12b2).
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Optics

6.1 The bending of light

For the refraction at a surface holds: ni sin(θi) = nt sin(θt) where n is the refractive indexof the material.
Snell’s law is:

n2
n1

=
λ1
λ2
=

v1
v2

If∆n ≤ 1, the change in phase of the light is ∆ϕ = 0, if∆n > 1 holds: ∆ϕ = π. The refraction of light in a
material is caused by scattering from atoms. This is described by:

n2 = 1 +
nee

2

ε0m

∑
j

fj
ω20,j − ω2 − iδω

where ne is the electron density and fj the oscillator strength, for which holds:
∑
j

fj = 1. From this follows

that vg = c/(1 + (nee2/2ε0mω2)). From this the equation of Cauchy can be derived: n = a0 + a1/λ
2. More

general, it is possible to expand n as: n =
n∑

k=0

ak
λ2k

.

For an electromagnetic wave in general holds: n =
√
εrµr.

The path, followed by a light ray in material can be found from Fermat’s principle:

δ

2∫
1

dt = δ

2∫
1

n(s)
c

ds = 0⇒ δ

2∫
1

n(s)ds = 0

6.2 Paraxial geometrical optics

6.2.1 Lenses

The Gaussian lens formula can be deduced from Fermat’s principle with the approximations cosϕ = 1 and
sinϕ = ϕ. For the refraction at a spherical surface with radius R holds:

n1
v
− n2

b
=

n1 − n2
R

where |v| is the distance of the object and |b| the distance of the image. Applying this twice results in:

1
f
= (nl − 1)

(
1
R2

− 1
R1

)

where nl is the refractive index of the lens, f is the focal length and R1 and R2 are the curvature radii of both
surfaces. For a double concave lens holds R1 < 0, R2 > 0, for a double convex lens holds R1 > 0 and
R2 < 0. Further holds:

1
f
=
1
v
− 1

b
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D := 1/f is called the dioptric power of a lens. For a lens with thickness d and diameter D holds to a good
approximation: 1/f = 8(n− 1)d/D2. For two lenses placed on a line with distance d holds:

1
f
=
1
f1
+
1
f2
− d

f1f2

In these equations the following signs are being used for refraction at a spherical surface, as is seen by an
incoming light ray:

Quantity + −
R Concave surface Convex surface
f Converging lens Diverging lens
v Real object Virtual object
b Virtual image Real image

6.2.2 Mirrors

For images of mirrors holds:

1
f
=
1
v
+
1
b
=
2
R
+

h2

2

(
1
R
− 1

v

)2
where h is the perpendicular distance from the point the light ray hits the mirror to the optical axis. Spherical
aberration can be reduced by not using spherical mirrors. A parabolical mirror has no spherical aberration for
light rays parallel with the optical axis and is therefore often used for telescopes. The used signs are:

Quantity + −
R Concave mirror Convex mirror
f Concave mirror Convex mirror
v Real object Virtual object
b Real image Virtual image

6.2.3 Principal planes

The nodal pointsN of a lens are defined by the figure on the right. If the lens is
surrounded by the same medium on both sides, the nodal points are the same as
the principal points H. The plane ⊥ the optical axis through the principal points
is called the principal plane. If the lens is described by a matrix m ij than for the
distances h1 and h2 to the boundary of the lens holds:

h1 = n
m11 − 1
m12

, h2 = n
m22 − 1
m12

� ��
N1

N2O

6.2.4 Magnification

The linear magnificationis defined by: N = − b

v

The angular magnificationis defined by: Nα = − αsyst
αnone

where αsys is the size of the retinal image with the optical system and αnone the size of the retinal image
without the system. Further holds: N ·Nα = 1. For a telescope holds: N = fobjective/focular. The f-number
is defined by f/Dobjective.



26 Physics Formulary by ir. J.C.A. Wevers

6.3 Matrix methods

A light ray can be described by a vector (nα, y) with α the angle with the optical axis and y the distance to
the optical axis. The change of a light ray interacting with an optical system can be obtained using a matrix
multiplication: (

n2α2
y2

)
=M

(
n1α1
y1

)
where Tr(M) = 1. M is a product of elementary matrices. These are:

1. Transfer along length l: MR =
(

1 0
l/n 1

)

2. Refraction at a surface with dioptric power D: MT =
(
1 −D
0 1

)

6.4 Aberrations

Lenses usually do not give a perfect image. Some causes are:

1. Chromatic aberration is caused by the fact that n = n(λ). This can be partially corrected with a lens
which is composed of more lenses with different functions n i(λ). Using N lenses makes it possible to
obtain the same f for N wavelengths.

2. Spherical aberration is caused by second-order effects which are usually ignored; a spherical surface
does not make a perfect lens. Incomming rays far from the optical axis will more bent.

3. Coma is caused by the fact that the principal planes of a lens are only flat near the principal axis. Further
away of the optical axis they are curved. This curvature can be both positive or negative.

4. Astigmatism: from each point of an object not on the optical axis the image is an ellipse because the
thickness of the lens is not the same everywhere.

5. Field curvature can be corrected by the human eye.

6. Distorsion gives abberations near the edges of the image. This can be corrected with a combination of
positive and negative lenses.

6.5 Reflection and transmission

If an electromagnetic wave hits a transparent medium part of the wave will reflect at the same angle as the
incident angle, and a part will be refracted at an angle according to Snell’s law. It makes a difference whether
the �E field of the wave is ⊥ or ‖ w.r.t. the surface. When the coefficients of reflection r and transmission t are
defined as:

r‖ ≡
(
E0r
E0i

)
‖
, r⊥ ≡

(
E0r
E0i

)
⊥

, t‖ ≡
(
E0t
E0i

)
‖
, t⊥ ≡

(
E0t
E0i

)
⊥

where E0r is the reflected amplitude and E0t the transmitted amplitude. Then the Fresnel equations are:

r‖ =
tan(θi − θt)
tan(θi + θt)

, r⊥ =
sin(θt − θi)
sin(θt + θi)

t‖ =
2 sin(θt) cos(θi)

sin(θt + θi) cos(θt − θi)
, t⊥ =

2 sin(θt) cos(θi)
sin(θt + θi)

The following holds: t⊥ − r⊥ = 1 and t‖ + r‖ = 1. If the coefficient of reflection R and transmission T are
defined as (with θi = θr):

R ≡ Ir
Ii

and T ≡ It cos(θt)
Ii cos(θi)
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with I = 〈|�S|〉 it follows: R+T = 1. A special case is r‖ = 0. This happens if the angle between the reflected
and transmitted rays is 90◦. From Snell’s law it then follows: tan(θi) = n. This angle is called Brewster’s
angle. The situation with r⊥ = 0 is not possible.

6.6 Polarization

The polarization is defined as: P =
Ip

Ip + Iu
=

Imax − Imin
Imax + Imin

where the intensity of the polarized light is given by Ip and the intensity of the unpolarized light is given by
Iu. Imax and Imin are the maximum and minimum intensities when the light passes a polarizer. If polarized
light passes through a polarizer Malus lawapplies: I(θ) = I(0) cos2(θ) where θ is the angle of the polarizer.

The state of a light ray can be described by the Stokes-parameters: start with 4 filters which each transmits half
the intensity. The first is independent of the polarization, the second and third are linear polarizers with the
transmission axes horizontal and at+45◦, while the fourth is a circular polarizer which is opaque for L-states.
Then holds S1 = 2I1, S2 = 2I2 − 2I1, S3 = 2I3 − 2I1 and S4 = 2I4 − 2I1.
The state of a polarizedlight ray can also be described by the Jones vector:

�E =
(

E0xeiϕx

E0yeiϕy

)

For the horizontal P -state holds: �E = (1, 0), for the vertical P -state �E = (0, 1), the R-state is given by
�E = 1

2

√
2(1,−i) and the L-state by �E = 1

2

√
2(1, i). The change in state of a light beam after passage of

optical equipment can be described as �E2 =M · �E1. For some types of optical equipment the Jones matrix M
is given by:

Horizontal linear polarizer:

(
1 0
0 0

)

Vertical linear polarizer:

(
0 0
0 1

)

Linear polarizer at +45◦ 1
2

(
1 1
1 1

)

Lineair polarizer at −45◦ 1
2

(
1 −1
−1 1

)
1
4 -λ plate, fast axis vertical eiπ/4

(
1 0
0 −i

)
1
4 -λ plate, fast axis horizontal eiπ/4

(
1 0
0 i

)

Homogene circular polarizor right 1
2

(
1 i
−i 1

)

Homogene circular polarizer left 1
2

(
1 −i
i 1

)

6.7 Prisms and dispersion

A light ray passing through a prism is refracted twice and aquires a deviation from its original direction
δ = θi + θi′ + α w.r.t. the incident direction, where α is the apex angle, θ i is the angle between the incident
angle and a line perpendicular to the surface and θ i′ is the angle between the ray leaving the prism and a line
perpendicular to the surface. When θi varies there is an angle for which δ becomes minimal. For the refractive
index of the prism now holds:

n =
sin(12 (δmin + α))

sin(12α)
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The dispersion of a prism is defined by:

D =
dδ

dλ
=

dδ

dn

dn

dλ

where the first factor depends on the shape and the second on the composition of the prism. For the first factor
follows:

dδ

dn
=

2 sin(12α)
cos(12 (δmin + α))

For visible light usually holds dn/dλ < 0: shorter wavelengths are stronger bent than longer. The refractive
index in this area can usually be approximated by Cauchy’s formula.

6.8 Diffraction

Fraunhofer diffraction occurs far away from the source(s). The Fraunhofer diffraction of light passing through
multiple slits is described by:

I(θ)
I0

=
(
sin(u)

u

)2
·
(
sin(Nv)
sin(v)

)2
where u = πb sin(θ)/λ, v = πd sin(θ)/λ. N is the number of slits, b the width of a slit and d the distance
between the slits. The maxima in intensity are given by d sin(θ) = kλ.

The diffraction through a spherical aperture with radius a is described by:

I(θ)
I0

=
(
J1(ka sin(θ))
ka sin(θ)

)2
The diffraction pattern of a rectangular aperture at distance R with length a in the x-direction and b in the
y-direction is described by:

I(x, y)
I0

=
(
sin(α′)

α′

)2 ( sin(β′)
β′

)2
where α′ = kax/2R and β′ = kby/2R.

When X rays are diffracted at a crystal holds for the position of the maxima in intensity Bragg’s relation:
2d sin(θ) = nλ where d is the distance between the crystal layers.

Close at the source the Fraunhofermodel is invalid because it ignores the angle-dependence of the reflected
waves. This is described by the obliquity or inclination factor, which describes the directionality of the sec-
ondary emissions: E(θ) = 1

2E0(1 + cos(θ)) where θ is the angle w.r.t. the optical axis.

Diffraction limits the resolutionof a system. This is the minimum angle ∆θmin between two incident rays
coming from points far away for which their refraction patterns can be detected separately. For a circular slit
holds: ∆θmin = 1.22λ/D where D is the diameter of the slit.

For a grating holds: ∆θmin = 2λ/(Na cos(θm)) where a is the distance between two peaks and N the
number of peaks. The minimum difference between two wavelengths that gives a separated diffraction pattern
in a multiple slit geometry is given by ∆λ/λ = nN where N is the number of lines and n the order of the
pattern.

6.9 Special optical effects

• Birefringe and dichroism. �D is not parallel with �E if the polarizability �P of a material is not equal in
all directions. There are at least 3 directions, the principal axes, in which they are parallel. This results
in 3 refractive indices ni which can be used to construct Fresnel’s ellipsoid. In case n2 = n3 �= n1,
which happens e.g. at trigonal, hexagonal and tetragonal crystals there is one optical axis in the direction
of n1. Incident light rays can now be split up in two parts: the ordinary waveis linear polarized ⊥ the
plane through the transmission direction and the optical axis. The extraordinary waveis linear polarized
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in the plane through the transmission direction and the optical axis. Dichroismis caused by a different
absorption of the ordinary and extraordinary wave in some materials. Double imagesoccur when the
incident ray makes an angle with the optical axis: the extraordinary wave will refract, the ordinary will
not.

• Retarders: waveplates and compensators. Incident light will have a phase shift of ∆ϕ = 2πd(|n 0 −
ne|)/λ0 if an uniaxial crystal is cut in such a way that the optical axis is parallel with the front and back
plane. Here, λ0 is the wavelength in vacuum and n0 and ne the refractive indices for the ordinary and
extraordinary wave. For a quarter-wave plate holds: ∆ϕ = π/2.

• The Kerr-effect: isotropic, transparent materials can become birefringent when placed in an electric
field. In that case, the optical axis is parallel to �E. The difference in refractive index in the two directions
is given by: ∆n = λ0KE2, where K is the Kerr constantof the material. If the electrodes have an
effective length 5 and are separated by a distance d, the retardation is given by: ∆ϕ = 2πK5V 2/d2,
where V is the applied voltage.

• The Pockels or linear electro-optical effect can occur in 20 (from a total of 32) crystal symmetry classes,
namely those without a centre of symmetry. These crystals are also piezoelectric: their polarization
changes when a pressure is applied and vice versa: �P = pd+ ε0χ�E. The retardation in a Pockels cell is
∆ϕ = 2πn30r63V/λ0 where r63 is the 6-3 element of the electro-optic tensor.

• The Faraday effect: the polarization of light passing through material with length d and to which a
magnetic field is applied in the propagation direction is rotated by an angle β = VBd where V is the
Verdet constant.

• C̆erenkov radiation arises when a charged particle with vq > vf arrives. The radiation is emitted within
a cone with an apex angle α with sin(α) = c/cmedium = c/nvq.

6.10 The Fabry-Perot interferometer

For a Fabry-Perot interferometer holds in
general: T + R + A = 1 where T is the
transmission factor, R the reflection factor
and A the absorption factor. If F is given
by F = 4R/(1 − R)2 it follows for the
intensity distribution:

It
Ii
=
[
1− A

1−R

]2 1
1 + F sin2(θ)

The term [1 + F sin2(θ)]−1 := A(θ) is
called the Airy function.

✛ ✲
Source Lens d Focussing lens

Screen

�����

The width of the peaks at half height is given by γ = 4/
√
F . The finesseF is defined as F = 1

2π
√
F . The

maximum resolution is then given by∆fmin = c/2ndF .
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Statistical physics

7.1 Degrees of freedom

A molecule consisting of n atoms has s = 3n degrees of freedom. There are 3 translational degrees of freedom,
a linear molecule has s = 3n − 5 vibrational degrees of freedom and a non-linear molecule s = 3n − 6. A
linear molecule has 2 rotational degrees of freedom and a non-linear molecule 3.

Because vibrational degrees of freedom account for both kinetic and potential energy they count double. So,
for linear molecules this results in a total of s = 6n− 5. For non-linear molecules this gives s = 6n− 6. The
average energy of a molecule in thermodynamic equilibrium is 〈E tot〉 = 1

2skT . Each degree of freedom of a
molecule has in principle the same energy: the principle of equipartition.

The rotational and vibrational energy of a molecule are:

Wrot =
h̄2

2I
l(l+ 1) = Bl(l + 1) , Wvib = (v + 1

2 )h̄ω0

The vibrational levels are excited if kT ≈ h̄ω, the rotational levels of a hetronuclear molecule are excited if
kT ≈ 2B. For homonuclear molecules additional selection rules apply so the rotational levels are well coupled
if kT ≈ 6B.

7.2 The energy distribution function

The general form of the equilibrium velocity distribution function is
P (vx, vy, vz)dvxdvydvz = P (vx)dvx · P (vy)dvy · P (vz)dvz with

P (vi)dvi =
1

α
√
π
exp
(
− v2i
α2

)
dvi

where α =
√
2kT/m is the most probable velocityof a particle. The average velocity is given by 〈v〉 =

2α/
√
π, and

〈
v2
〉
= 3
2α
2. The distribution as a function of the absolute value of the velocity is given by:

dN

dv
=

4N
α3
√
π

v2 exp
(
−mv2

2kT

)

The general form of the energy distribution function then becomes:

P (E)dE =
c(s)
kT

(
E

kT

) 1
2 s−1

exp
(
− E

kT

)
dE

where c(s) is a normalization constant, given by:

1. Even s: s = 2l: c(s) =
1

(l − 1)!

2. Odd s: s = 2l+ 1: c(s) =
2l√

π(2l− 1)!!
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7.3 Pressure on a wall

The number of molecules that collides with a wall with surface A within a time τ is given by:

∫∫∫
d3N =

∞∫
0

π∫
0

2π∫
0

nAvτ cos(θ)P (v, θ, ϕ)dvdθdϕ

From this follows for the particle flux on the wall: Φ = 1
4n 〈v〉. For the pressure on the wall then follows:

d3p =
2mv cos(θ)d3N

Aτ
, so p =

2
3
n 〈E〉

7.4 The equation of state

If intermolecular forces and the volume of the molecules can be neglected then for gases from p = 2
3n 〈E〉

and 〈E〉 = 3
2kT can be derived:

pV = nsRT =
1
3
Nm
〈
v2
〉

Here, ns is the number of molesparticles and N is the total number of particles within volume V . If the own
volume and the intermolecular forces cannot be neglected the Van der Waalsequation can be derived:(

p+
an2s
V 2

)
(V − bns) = nsRT

There is an isotherme with a horizontal point of inflection. In the Van der Waals equation this corresponds
with the critical temperature, pressureand volumeof the gas. This is the upper limit of the area of coexistence
between liquid and vapor. From dp/dV = 0 and d2p/dV 2 = 0 follows:

Tcr =
8a
27bR

, pcr =
a

27b2
, Vcr = 3bns

For the critical point holds: pcrVm,cr/RTcr = 3
8 , which differs from the value of 1 which follows from the

general gas law.

Scaled on the critical quantities, with p∗ := p/pcr, T ∗ = T/Tcr and V ∗
m = Vm/Vm,cr with Vm := V/ns holds:

(
p∗ +

3
(V ∗

m)2

)(
V ∗
m − 1

3

)
= 8
3T

∗

Gases behave the same for equal values of the reduced quantities: the law of the corresponding states. A virial
expansionis used for even more accurate views:

p(T, Vm) = RT

(
1
Vm

+
B(T )
V 2m

+
C(T )
V 3m

+ · · ·
)

The Boyle temperatureTB is the temperature for which the 2nd virial coefficient is 0. In a Van der Waals gas,
this happens at TB = a/Rb. The inversion temperatureTi = 2TB.

The equation of state for solids and liquids is given by:

V

V0
= 1 + γp∆T − κT∆p = 1 +

1
V

(
∂V

∂T

)
p

∆T +
1
V

(
∂V

∂p

)
T

∆p
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7.5 Collisions between molecules

The collision probability of a particle in a gas that is translated over a distance dx is given by nσdx, where σ is

the cross section. The mean free path is given by 5 =
v1
nuσ

with u =
√

v21 + v22 the relative velocity between

the particles. If m1 � m2 holds:
u

v1
=
√
1 +

m1
m2

, so 5 =
1
nσ

. If m1 = m2 holds: 5 =
1

nσ
√
2

. This means

that the average time between two collisions is given by τ =
1

nσv
. If the molecules are approximated by hard

spheres the cross section is: σ = 1
4π(D

2
1 +D22). The average distance between two molecules is 0.55n−1/3.

Collisions between molecules and small particles in a solution result in the Brownian motion. For the average
motion of a particle with radius R can be derived:

〈
x2i
〉
= 1
3

〈
r2
〉
= kT t/3πηR.

A gas is called a Knudsen gasif 5 � the dimensions of the gas, something that can easily occur at low
pressures. The equilibrium condition for a vessel which has a hole with surface A in it for which holds that
5�√A/π is: n1

√
T1 = n2

√
T2. Together with the general gas law follows: p1/

√
T1 = p2/

√
T2.

If two plates move along each other at a distance d with velocity wx the viscosityη is given by: Fx = η
Awx

d
.

The velocity profile between the plates is in that case given by w(z) = zwx/d. It can be derived that η =
1
335 〈v〉 where v is the thermal velocity.

The heat conductance in a non-moving gas is described by:
dQ

dt
= κA

(
T2 − T1

d

)
, which results in a temper-

ature profile T (z) = T1+ z(T2−T1)/d. It can be derived that κ = 1
3CmV n5 〈v〉 /NA. Also holds: κ = CV η.

A better expression for κ can be obtained with the Eucken correction: κ = (1 + 9R/4cmV )CV · η with an
error <5%.

7.6 Interaction between molecules

For dipole interaction between molecules can be derived that U ∼ −1/r 6. If the distance between two
molecules approaches the molecular diameter D a repulsing force between the electron clouds appears. This
force can be described by Urep ∼ exp(−γr) or Vrep = +Cs/r

s with 12 ≤ s ≤ 20. This results in the
Lennard-Jonespotential for intermolecular forces:

ULJ = 4ε

[(
D

r

)12
−
(
D

r

)6]

with a minimum ε at r = rm. The following holds: D ≈ 0.89rm. For the Van der Waals coefficients a and b
and the critical quantities holds: a = 5.275N 2

AD
3ε, b = 1.3NAD3, kTkr = 1.2ε and Vm,kr = 3.9NAD3.

A more simple model for intermolecular forces assumes a potential U(r) = ∞ for r < D, U(r) = ULJ for
D ≤ r ≤ 3D and U(r) = 0 for r ≥ 3D. This gives for the potential energy of one molecule: E pot =∫ 3D
D

U(r)F (r)dr.

with F (r) the spatial distribution function in spherical coordinates, which for a homogeneous distribution is
given by: F (r)dr = 4nπr2dr.

Some useful mathematical relations are:

∞∫
0

xne−xdx = n! ,

∞∫
0

x2ne−x2
dx =

(2n)!
√
π

n!22n+1
,

∞∫
0

x2n+1e−x2
dx = 1

2n!
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Thermodynamics

8.1 Mathematical introduction

If there exists a relation f(x, y, z) = 0 between 3 variables, one can write: x = x(y, z), y = y(x, z) and
z = z(x, y). The total differentialdz of z is than given by:

dz =
(
∂z

∂x

)
y

dx+
(
∂z

∂y

)
x

dy

By writing this also for dx and dy it can be obtained that(
∂x

∂y

)
z

·
(
∂y

∂z

)
x

·
(
∂z

∂x

)
y

= −1

Because dz is a total differential holds
∮
dz = 0.

A homogeneous function of degree m obeys: εmF (x, y, z) = F (εx, εy, εz). For such a function Euler’s
theorem applies:

mF (x, y, z) = x
∂F

∂x
+ y

∂F

∂y
+ z

∂F

∂z

8.2 Definitions

• The isochoric pressure coefficient: βV =
1
p

(
∂p

∂T

)
V

• The isothermal compressibility: κT = − 1
V

(
∂V

∂p

)
T

• The isobaric volume coefficient: γp =
1
V

(
∂V

∂T

)
p

• The adiabatic compressibility: κS = − 1
V

(
∂V

∂p

)
S

For an ideal gas follows: γp = 1/T , κT = 1/p and βV = −1/V .

8.3 Thermal heat capacity

• The specific heat at constant X is: CX = T

(
∂S

∂T

)
X

• The specific heat at constant pressure: Cp =
(
∂H

∂T

)
p

• The specific heat at constant volume: CV =
(
∂U

∂T

)
V
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For an ideal gas holds: Cmp −CmV = R. Further, if the temperature is high enough to thermalize all internal
rotational and vibrational degrees of freedom, holds: CV = 1

2sR. Hence Cp = 1
2 (s+2)R. For their ratio now

follows γ = (2 + s)/s. For a lower T one needs only to consider the thermalized degrees of freedom. For a
Van der Waals gas holds: CmV = 1

2sR+ ap/RT 2.

In general holds:

Cp − CV = T

(
∂p

∂T

)
V

·
(
∂V

∂T

)
p

= −T

(
∂V

∂T

)2
p

(
∂p

∂V

)
T

≥ 0

Because (∂p/∂V )T is always < 0, the following is always valid: Cp ≥ CV . If the coefficient of expansion is
0, Cp = CV , and also at T = 0K.

8.4 The laws of thermodynamics

The zeroth law states that heat flows from higher to lower temperatures. The first law is the conservation of
energy. For a closed system holds: Q = ∆U +W , where Q is the total added heat, W the work done and
∆U the difference in the internal energy. In differential form this becomes: dQ = dU + dW , where d means
that the it is not a differential of a quantity of state. For a quasi-static process holds: dW = pdV . So for a
reversible process holds: dQ = dU + pdV .

For an open (flowing) system the first law is: Q = ∆H +Wi +∆Ekin +∆Epot. One can extract an amount
of work Wt from the system or add Wt = −Wi to the system.

The second law states: for a closed system there exists an additive quantityS, called the entropy, the differential
of which has the following property:

dS ≥ dQ

T

If the only processes occurring are reversible holds: dS = dQ rev/T . So, the entropy difference after a
reversible process is:

S2 − S1 =

2∫
1

dQrev
T

So, for a reversible cycle holds:
∮

dQrev
T

= 0.

For an irreversible cycle holds:
∮

dQirr
T

< 0.

The third law of thermodynamics is (Nernst):

lim
T→0

(
∂S

∂X

)
T

= 0

From this it can be concluded that the thermal heat capacity → 0 if T → 0, so absolute zero temperature
cannot be reached by cooling through a finite number of steps.

8.5 State functions and Maxwell relations

The quantities of state and their differentials are:

Internal energy: U dU = TdS − pdV
Enthalpy: H = U + pV dH = TdS + V dp
Free energy: F = U − TS dF = −SdT − pdV
Gibbs free enthalpy: G = H − TS dG = −SdT + V dp
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From this one can derive Maxwell’s relations:(
∂T

∂V

)
S

= −
(
∂p

∂S

)
V

,

(
∂T

∂p

)
S

=
(
∂V

∂S

)
p

,

(
∂p

∂T

)
V

=
(
∂S

∂V

)
T

,

(
∂V

∂T

)
p

= −
(
∂S

∂p

)
T

From the total differential and the definitions of CV and Cp it can be derived that:

TdS = CV dT + T

(
∂p

∂T

)
V

dV and TdS = CpdT − T

(
∂V

∂T

)
p

dp

For an ideal gas also holds:

Sm = CV ln
(

T

T0

)
+R ln

(
V

V0

)
+ Sm0 and Sm = Cp ln

(
T

T0

)
−R ln

(
p

p0

)
+ S′

m0

Helmholtz’ equations are:(
∂U

∂V

)
T

= T

(
∂p

∂T

)
V

− p ,

(
∂H

∂p

)
T

= V − T

(
∂V

∂T

)
p

for an enlarged surface holds: dWrev = −γdA, with γ the surface tension. From this follows:

γ =
(
∂U

∂A

)
S

=
(
∂F

∂A

)
T

8.6 Processes

The efficiencyη of a process is given by: η =
Work done
Heat added

The Cold factorξ of a cooling down process is given by: ξ =
Cold delivered

Work added
Reversible adiabatic processes

For adiabatic processes holds: W = U1 − U2. For reversible adiabatic processes holds Poisson’s equation:
with γ = Cp/CV one gets that pV γ =constant. Also holds: TV γ−1 =constant and T γp1−γ =constant.
Adiabatics exhibit a greater steepness p-V diagram than isothermics because γ > 1.

Isobaric processes

Here holds: H2 −H1 =
∫ 2
1
CpdT . For a reversible isobaric process holds: H2 −H1 = Qrev.

The throttle process

This is also called the Joule-Kelvineffect and is an adiabatic expansion of a gas through a porous material or a
small opening. Here H is a conserved quantity, and dS > 0. In general this is accompanied with a change in
temperature. The quantity which is important here is the throttle coefficient:

αH =
(
∂T

∂p

)
H

=
1
Cp

[
T

(
∂V

∂T

)
p

− V

]

The inversion temperatureis the temperature where an adiabatically expanding gas keeps the same tempera-
ture. If T > Ti the gas heats up, if T < Ti the gas cools down. Ti = 2TB, with for TB: [∂(pV )/∂p]T = 0.
The throttle process is e.g. applied in refridgerators.

The Carnotprocess

The system undergoes a reversible cycle with 2 isothemics and 2 adiabatics:

1. Isothermic expansion at T1. The system absorbs a heat Q1 from the reservoir.

2. Adiabatic expansion with a temperature drop to T 2.
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3. Isothermic compression at T2, removing Q2 from the system.

4. Adiabatic compression to T1.

The efficiency for Carnot’s process is:

η = 1− |Q2|
|Q1| = 1−

T2
T1
:= ηC

The Carnot efficiencyηC is the maximal efficiency at which a heat machine can operate. If the process is
applied in reverse order and the system performs a work−W the cold factor is given by:

ξ =
|Q2|
W

=
|Q2|

|Q1| − |Q2| =
T2

T1 − T2

The Stirling process

Stirling’s cycle exists of 2 isothermics and 2 isochorics. The efficiency in the ideal case is the same as for
Carnot’s cycle.

8.7 Maximal work

Consider a system that changes from state 1 into state 2, with the temperature and pressure of the surroundings
given by T0 and p0. The maximum work which can be obtained from this change is, when all processes are
reversible:

1. Closed system: Wmax = (U1 − U2)− T0(S1 − S2) + p0(V1 − V2).

2. Open system: Wmax = (H1 −H2)− T0(S1 − S2)−∆Ekin −∆Epot.

The minimal work needed to attain a certain state is: Wmin = −Wmax.

8.8 Phase transitions

Phase transitions are isothermic and isobaric, so dG = 0. When the phases are indicated by α, β and γ holds:
Gα
m = Gβ

m and

∆Sm = Sα
m − Sβ

m =
rβα
T0

where rβα is the transition heat of phase β to phase α and T0 is the transition temperature. The following
holds: rβα = rαβ and rβα = rγα − rγβ . Further

Sm =
(
∂Gm

∂T

)
p

so G has a twist in the transition point. In a two phase system Clapeyron’s equation is valid:

dp

dT
=

Sα
m − Sβ

m

V α
m − V β

m

=
rβα

(V α
m − V β

m)T

For an ideal gas one finds for the vapor line at some distance from the critical point:

p = p0e−rβα/RT

There exist also phase transitions with rβα = 0. For those there will occur only a discontinuity in the second
derivates of Gm. These second-order transitions appear at organization phenomena.

A phase-change of the 3rd order, so with e.g. [∂ 3Gm/∂T 3]p non continuous arises e.g. when ferromagnetic
iron changes to the paramagnetic state.
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8.9 Thermodynamic potential

When the number of particles within a system changes this number becomes a third quantity of state. Because
addition of matter usually takes place at constant p and T , G is the relevant quantity. If a system exists of more
components this becomes:

dG = −SdT + V dp+
∑
i

µidni

where µ =
(
∂G

∂ni

)
p,T,nj

is called the thermodynamic potential. This is a partial quantity. For V holds:

V =
c∑

i=1

ni

(
∂V

∂ni

)
nj ,p,T

:=
c∑

i=1

niVi

where Vi is the partial volume of component i. The following holds:

Vm =
∑
i

xiVi

0 =
∑
i

xidVi

where xi = ni/n is the molar fraction of component i. The molar volume of a mixture of two components
can be a concave line in a V -x2 diagram: the mixing contracts the volume.

The thermodynamic potentials are not independent in a multiple-phase system. It can be derived that∑
i

nidµi = −SdT + V dp, this gives at constant p and T :
∑
i

xidµi = 0 (Gibbs-Duhmen).

Each component has as much µ’s as there are phases. The number of free parameters in a system with c
components and p different phases is given by f = c+ 2− p.

8.10 Ideal mixtures

For a mixture of n components holds (the index 0 is the value for the pure component):

Umixture =
∑
i

niU
0
i , Hmixture =

∑
i

niH
0
i , Smixture = n

∑
i

xiS
0
i +∆Smix

where for ideal gases holds: ∆Smix = −nR
∑
i

xi ln(xi).

For the thermodynamic potentials holds: µ i = µ0i +RT ln(xi) < µ0i . A mixture of two liquids is rarely ideal:
this is usually only the case for chemically related components or isotopes. In spite of this holds Raoult’s law
for the vapour pressure holds for many binary mixtures: p i = xip

0
i = yip. Here is xi the fraction of the ith

component in liquid phase and y i the fraction of the ith component in gas phase.

A solution of one component in another gives rise to an increase in the boiling point ∆T k and a decrease of
the freezing point∆Ts. For x2 � 1 holds:

∆Tk =
RT 2k
rβα

x2 , ∆Ts = −RT 2s
rγβ

x2

with rβα the evaporation heat and rγβ < 0 the melting heat. For the osmotic pressureΠ of a solution holds:
ΠV 0m1 = x2RT .

8.11 Conditions for equilibrium

When a system evolves towards equilibrium the only changes that are possible are those for which holds:
(dS)U,V ≥ 0 or (dU)S,V ≤ 0 or (dH)S,p ≤ 0 or (dF )T,V ≤ 0 or (dG)T,p ≤ 0. In equilibrium for each
component holds: µα

i = µβi = µγi .
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8.12 Statistical basis for thermodynamics

The number of possibilities P to distribute N particles on n possible energy levels, each with a g-fold degen-
eracy is called the thermodynamic probability and is given by:

P = N !
∏
i

gni

i

ni!

The most probable distribution, that with the maximum value for P , is the equilibrium state. When Stirling’s
equation, ln(n!) ≈ n ln(n) − n is used, one finds for a discrete system the Maxwell-Boltzmann distribution.
The occupation numbers in equilibrium are then given by:

ni =
N

Z
gi exp

(
−Wi

kT

)

The state sumZ is a normalization constant, given by: Z =
∑
i

gi exp(−Wi/kT ). For an ideal gas holds:

Z =
V (2πmkT )3/2

h3

The entropy can then be defined as: S = k ln(P ) . For a system in thermodynamic equilibrium this becomes:

S =
U

T
+ kN ln

(
Z

N

)
+ kN ≈ U

T
+ k ln

(
ZN

N !

)

For an ideal gas, with U = 3
2kT then holds: S = 5

2kN + kN ln
(
V (2πmkT )3/2

Nh3

)

8.13 Application to other systems

Thermodynamics can be applied to other systems than gases and liquids. To do this the term dW = pdV has
to be replaced with the correct work term, like dW rev = −Fdl for the stretching of a wire, dWrev = −γdA
for the expansion of a soap bubble or dW rev = −BdM for a magnetic system.

A rotating, non-charged black hole has a temparature of T = h̄c/8πkm. It has an entropy S = Akc 3/4h̄κ
with A the area of its event horizon. For a Schwarzschild black hole A is given by A = 16πm 2. Hawkings
area theorem states that dA/dt ≥ 0.

Hence, the lifetime of a black hole ∼ m3.
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Transport phenomena

9.1 Mathematical introduction

An important relation is: if X is a quantity of a volume element which travels from position �r to �r + d�r in a
time dt, the total differential dX is then given by:

dX =
∂X

∂x
dx+

∂X

∂y
dy +

∂X

∂z
dz +

∂X

∂t
dt ⇒ dX

dt
=

∂X

∂x
vx +

∂X

∂y
vy +

∂X

∂z
vz +

∂X

∂t

This results in general to:
dX

dt
=

∂X

∂t
+ (�v · ∇)X .

From this follows that also holds:
d

dt

∫∫∫
Xd3V =

∂

∂t

∫∫∫
Xd3V +

∫∫
© X(�v · �n )d2A

where the volume V is surrounded by surface A. Some properties of the ∇ operator are:

div(φ�v ) = φdiv�v + gradφ · �v rot(φ�v ) = φrot�v + (gradφ)× �v rot gradφ = �0
div(�u × �v ) = �v · (rot�u )− �u · (rot�v ) rot rot�v = grad div�v −∇2�v div rot�v = 0
div gradφ = ∇2φ ∇2�v ≡ (∇2v1,∇2v2,∇2v3)

Here, �v is an arbitrary vector field and φ an arbitrary scalar field. Some important integral theorems are:

Gauss:
∫∫
© (�v · �n )d2A =

∫∫∫
(div�v )d3V

Stokes for a scalar field:
∮
(φ · �et)ds =

∫∫
(�n× gradφ)d2A

Stokes for a vector field:
∮
(�v · �et)ds =

∫∫
(rot�v · �n )d2A

This results in:
∫∫
© (rot�v · �n )d2A = 0

Ostrogradsky:
∫∫
© (�n× �v )d2A =

∫∫∫
(rot�v )d3A

∫∫
© (φ�n )d2A =

∫∫∫
(gradφ)d3V

Here, the orientable surface
∫∫

d2A is limited by the Jordan curve
∮
ds.

9.2 Conservation laws

On a volume work two types of forces:

1. The force �f0 on each volume element. For gravity holds: �f0 = 3�g.

2. Surface forces working only on the margins: �t. For these holds: �t = �n T, where T is the stress tensor.
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T can be split in a part pI representing the normal tensions and a part T ′ representing the shear stresses:
T = T′ + pI, where I is the unit tensor. When viscous aspects can be ignored holds: divT= −gradp.

When the flow velocity is �v at position �r holds on position �r + d�r:

�v(d�r ) = �v(�r )︸︷︷︸
translation

+ d�r · (grad�v )︸ ︷︷ ︸
rotation, deformation, dilatation

The quantity L:=grad�v can be split in a symmetric part D and an antisymmetric part W. L = D+W with

Dij :=
1
2

(
∂vi
∂xj

+
∂vj
∂xi

)
, Wij :=

1
2

(
∂vi
∂xj

− ∂vj
∂xi

)

When the rotation or vorticity �ω = rot�v is introduced holds: W ij = 1
2εijkωk. �ω represents the local rotation

velocity: �dr ·W = 1
2ω × �dr.

For a Newtonian liquidholds: T′ = 2ηD. Here, η is the dynamical viscosity. This is related to the shear stress
τ by:

τij = η
∂vi
∂xj

For compressible media can be stated: T′ = (η′div�v )I + 2ηD. From equating the thermodynamical and
mechanical pressure it follows: 3η ′+2η = 0. If the viscosity is constant holds: div(2D) = ∇2�v+grad div�v.

The conservation laws for mass, momentum and energy for continuous media can be written in both integral
and differential form. They are:

Integral notation:

1. Conservation of mass:
∂

∂t

∫∫∫
3d3V +

∫∫
© 3(�v · �n )d2A = 0

2. Conservation of momentum:
∂

∂t

∫∫∫
3�vd3V +

∫∫
© 3�v(�v · �n )d2A =

∫∫∫
f0d

3V +
∫∫
© �n · Td2A

3. Conservation of energy:
∂

∂t

∫∫∫
(12v

2 + e)3d3V +
∫∫
© (12v

2 + e)3(�v · �n )d2A =

−
∫∫
© (�q · �n )d2A+

∫∫∫
(�v · �f0)d3V +

∫∫
© (�v · �n T)d2A

Differential notation:

1. Conservation of mass:
∂3

∂t
+ div · (3�v ) = 0

2. Conservation of momentum: 3
∂�v

∂t
+ (3�v · ∇)�v = �f0 + divT = �f0 − gradp+ divT′

3. Conservation of energy: 3T
ds

dt
= 3

de

dt
− p

3

d3

dt
= −div�q + T′ : D

Here, e is the internal energy per unit of mass E/m and s is the entropy per unit of mass S/m. �q = −κ �∇T is
the heat flow. Further holds:

p = −∂E

∂V
= − ∂e

∂1/3
, T =

∂E

∂S
=

∂e

∂s

so

CV =
(

∂e

∂T

)
V

and Cp =
(
∂h

∂T

)
p

with h = H/m the enthalpy per unit of mass.
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From this one can derive the Navier-Stokesequations for an incompressible, viscous and heat-conducting
medium:

div�v = 0

3
∂�v

∂t
+ 3(�v · ∇)�v = 3�g − gradp+ η∇2�v

3C
∂T

∂t
+ 3C(�v · ∇)T = κ∇2T + 2ηD : D

with C the thermal heat capacity. The force �F on an object within a flow, when viscous effects are limited to
the boundary layer, can be obtained using the momentum law. If a surface A surrounds the object outside the
boundary layer holds:

�F = −
∫∫
© [p�n+ 3�v(�v · �n )]d2A

9.3 Bernoulli’s equations

Starting with the momentum equation one can find for a non-viscous medium for stationary flows, with

(�v · grad)�v = 1
2grad(v

2) + (rot�v )× �v

and the potential equation �g = −grad(gh) that:

1
2v
2 + gh+

∫
dp

3
= constant along a streamline

For compressible flows holds: 12v
2 + gh + p/3 =constant along a line of flow. If also holds rot�v = 0 and

the entropy is equal on each streamline holds 12v
2 + gh+

∫
dp/3 =constant everywhere. For incompressible

flows this becomes: 12v
2 + gh+ p/3 =constant everywhere. For ideal gases with constant Cp and CV holds,

with γ = Cp/CV :

1
2v
2 +

γ

γ − 1
p

3
= 1
2v
2 +

c2

γ − 1 = constant

With a velocity potential defined by �v = gradφ holds for instationary flows:

∂φ

∂t
+ 1
2v
2 + gh+

∫
dp

3
= constant everywhere

9.4 Characterising of flows by dimensionless numbers

The advantage of dimensionless numbers is that they make model experiments possible: one has to make
the dimensionless numbers which are important for the specific experiment equal for both model and the
real situation. One can also deduce functional equalities without solving the differential equations. Some
dimensionless numbers are given by:

Strouhal: Sr =
ωL

v
Froude: Fr =

v2

gL
Mach: Ma =

v

c

Fourier: Fo =
a

ωL2
Péclet: Pe =

vL

a
Reynolds: Re =

vL

ν

Prandtl: Pr =
ν

a
Nusselt: Nu =

Lα

κ
Eckert: Ec =

v2

c∆T

Here, ν = η/3 is the kinematic viscosity, c is the speed of sound and L is a characteristic length of the system.
α follows from the equation for heat transport κ∂yT = α∆T and a = κ/3c is the thermal diffusion coefficient.

These numbers can be interpreted as follows:

• Re: (stationary inertial forces)/(viscous forces)
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• Sr: (non-stationary inertial forces)/(stationary inertial forces)

• Fr: (stationary inertial forces)/(gravity)

• Fo: (heat conductance)/(non-stationary change in enthalpy)

• Pe: (convective heat transport)/(heat conductance)

• Ec: (viscous dissipation)/(convective heat transport)

• Ma: (velocity)/(speed of sound): objects moving faster than approximately Ma = 0,8 produce shock-
waves which propagate with an angle θ with the velocity of the object. For this angle holds Ma=
1/ arctan(θ).

• Pr and Nu are related to specific materials.

Now, the dimensionless Navier-Stokes equation becomes, with x ′ = x/L, �v ′ = �v/V , grad′ = Lgrad, ∇′2 =
L2∇2 and t′ = tω:

Sr
∂�v ′

∂t′
+ (�v ′ · ∇′)�v ′ = −grad′p+ �g

Fr
+
∇′2�v ′

Re

9.5 Tube flows

For tube flows holds: they are laminar if Re< 2300 with dimension of length the diameter of the tube, and
turbulent if Re is larger. For an incompressible laminar flow through a straight, circular tube holds for the
velocity profile:

v(r) = − 1
4η

dp

dx
(R2 − r2)

For the volume flow holds: ΦV =

R∫
0

v(r)2πrdr = − π

8η
dp

dx
R4

The entrance lengthLe is given by:

1. 500 < ReD < 2300: Le/2R = 0.056ReD

2. Re > 2300: Le/2R ≈ 50

For gas transport at low pressures (Knudsen-gas) holds: ΦV =
4R3α

√
π

3
dp

dx

For flows at a small Re holds: ∇p = η∇2�v and div�v = 0. For the total force on a sphere with radius R in a
flow then holds: F = 6πηRv. For large Re holds for the force on a surface A: F = 1

2CWA3v2.

9.6 Potential theory

The circulationΓ is defined as: Γ =
∮
(�v · �et)ds =

∫∫
(rot�v ) · �nd2A =

∫∫
(�ω · �n )d2A

For non viscous media, if p = p(3) and all forces are conservative, Kelvin’s theorem can be derived:

dΓ
dt
= 0

For rotationless flows a velocity potential �v = gradφ can be introduced. In the incompressible case follows
from conservation of mass ∇2φ = 0. For a 2-dimensional flow a flow function ψ(x, y) can be defined: with
ΦAB the amount of liquid flowing through a curve s between the points A and B:

ΦAB =

B∫
A

(�v · �n )ds =
B∫

A

(vxdy − vydx)
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and the definitions vx = ∂ψ/∂y, vy = −∂ψ/∂x holds: ΦAB = ψ(B)− ψ(A). In general holds:

∂2ψ

∂x2
+

∂2ψ

∂y2
= −ωz

In polar coordinates holds:

vr =
1
r

∂ψ

∂θ
=

∂φ

∂r
, vθ = −∂ψ

∂r
=
1
r

∂φ

∂θ

For source flows with power Q in (x, y) = (0, 0) holds: φ =
Q

2π
ln(r) so that vr = Q/2πr, vθ = 0.

For a dipole of strength Q in x = a and strength−Q in x = −a follows from superposition: φ = −Qax/2πr 2

where Qa is the dipole strength. For a vortex holds: φ = Γθ/2π.

If an object is surrounded by an uniform main flow with �v = v�e x and such a large Re that viscous effects are
limited to the boundary layer holds: Fx = 0 and Fy = −3Γv. The statement that Fx = 0 is d’Alembert’s
paradox and originates from the neglection of viscous effects. The lift F y is also created by η because Γ �= 0
due to viscous effects. Henxe rotating bodies also create a force perpendicular to their direction of motion: the
Magnus effect.

9.7 Boundary layers

9.7.1 Flow boundary layers

If for the thickness of the boundary layer holds: δ � L holds: δ ≈ L/
√
Re. With v∞ the velocity of the main

flow it follows for the velocity vy ⊥ the surface: vyL ≈ δv∞. Blasius’ equation for the boundary layer is,
with vy/v∞ = f(y/δ): 2f ′′′ + ff ′′ = 0 with boundary conditions f(0) = f ′(0) = 0, f ′(∞) = 1. From this
follows: CW = 0.664 Re−1/2x .

The momentum theorem of Von Karman for the boundary layer is:
d

dx
(ϑv2) + δ∗v

dv

dx
=

τ0
3

where the displacement thickness δ∗v and the momentum thickness ϑv2 are given by:

ϑv2 =

∞∫
0

(v − vx)vxdy , δ∗v =

∞∫
0

(v − vx)dy and τ0 = −η
∂vx
∂y

∣∣∣∣
y=0

The boundary layer is released from the surface if

(
∂vx
∂y

)
y=0

= 0. This is equivalent with
dp

dx
=
12ηv∞

δ2
.

9.7.2 Temperature boundary layers

If the thickness of the temperature boundary layer δT � L holds: 1. If Pr ≤ 1: δ/δT ≈
√
Pr.

2. If Pr� 1: δ/δT ≈ 3
√
Pr.

9.8 Heat conductance

For non-stationairy heat conductance in one dimension without flow holds:

∂T

∂t
=

κ

3c

∂2T

∂x2
+Φ

where Φ is a source term. If Φ = 0 the solutions for harmonic oscillations at x = 0 are:

T − T∞
Tmax − T∞

= exp
(
− x

D

)
cos
(
ωt− x

D

)
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with D =
√
2κ/ω3c. At x = πD the temperature variation is in anti-phase with the surface. The one-

dimensional solution at Φ = 0 is

T (x, t) =
1

2
√
πat

exp
(
− x2

4at

)
This is mathematical equivalent to the diffusion problem:

∂n

∂t
= D∇2n+ P −A

where P is the production of and A the discharge of particles. The flow density J = −D∇n.

9.9 Turbulence

The time scale of turbulent velocity variations τt is of the order of: τt = τ
√
Re/Ma2 with τ the molecular

time scale. For the velocity of the particles holds: v(t) = 〈v〉 + v ′(t) with 〈v′(t)〉 = 0. The Navier-Stokes
equation now becomes:

∂ 〈�v 〉
∂t

+ (〈�v 〉 · ∇) 〈�v 〉 = −∇〈p〉
3

+ ν∇2 〈�v 〉+ divSR
3

where SRij = −3 〈vivj〉 is the turbulent stress tensor. Boussinesq’s assumption is: τij = −3
〈
v′iv

′
j

〉
. It is

stated that, analogous to Newtonian media: SR = 23νt 〈D〉. Near a boundary holds: νt = 0, far away of a
boundary holds: νt ≈ νRe.

9.10 Self organization

For a (semi) two-dimensional flow holds:
dω

dt
=

∂ω

∂t
+ J(ω, ψ) = ν∇2ω

With J(ω, ψ) the Jacobian. So if ν = 0, ω is conserved. Further, the kinetic energy/mA and the enstrofy V

are conserved: with �v = ∇× (�kψ)

E ∼ (∇ψ)2 ∼
∞∫
0

E(k, t)dk = constant , V ∼ (∇2ψ)2 ∼
∞∫
0

k2E(k, t)dk = constant

From this follows that in a two-dimensional flow the energy flux goes towards large values of k: larger struc-
tures become larger at the expanse of smaller ones. In three-dimensional flows the situation is just the opposite.
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Quantum physics

10.1 Introduction to quantum physics

10.1.1 Black body radiation

Planck’s law for the energy distribution for the radiation of a black body is:

w(f) =
8πhf3

c3
1

ehf/kT − 1 , w(λ) =
8πhc
λ5

1
ehc/λkT − 1

Stefan-Boltzmann’s law for the total power density can be derived from this: P = AσT 4. Wien’s law for the
maximum can also be derived from this: Tλmax = kW.

10.1.2 The Compton effect

For the wavelength of scattered light, if light is considered to exist of particles, can be derived:

λ′ = λ+
h

mc
(1− cos θ) = λ+ λC(1 − cos θ)

10.1.3 Electron diffraction

Diffraction of electrons at a crystal can be explained by assuming that particles have a wave character with
wavelength λ = h/p. This wavelength is called the Broglie-wavelength.

10.2 Wave functions

The wave character of particles is described by a wavefunction ψ. This wavefunction can be described in
normal or momentum space. Both definitions are each others Fourier transform:

Φ(k, t) =
1√
h

∫
Ψ(x, t)e−ikxdx and Ψ(x, t) =

1√
h

∫
Φ(k, t)eikxdk

These waves define a particle with group velocity vg = p/m and energy E = h̄ω.

The wavefunction can be interpreted as a measure for the probability P to find a particle somewhere (Born):
dP = |ψ|2d3V . The expectation value 〈f〉 of a quantity f of a system is given by:

〈f(t)〉 =
∫∫∫

Ψ∗fΨd3V , 〈fp(t)〉 =
∫∫∫

Φ∗fΦd3Vp

This is also written as 〈f(t)〉 = 〈Φ|f |Φ〉. The normalizing condition for wavefunctions follows from this:
〈Φ|Φ〉 = 〈Ψ|Ψ〉 = 1.

10.3 Operators in quantum physics

In quantum mechanics, classical quantities are translated into operators. These operators are hermitian because
their eigenvalues must be real: ∫

ψ∗
1Aψ2d

3V =
∫

ψ2(Aψ1)∗d3V
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When un is the eigenfunction of the eigenvalue equation AΨ = aΨ for eigenvalue a n,Ψ can be expanded into
a basis of eigenfunctions: Ψ =

∑
n

cnun. If this basis is taken orthonormal, then follows for the coefficients:

cn = 〈un|Ψ〉. If the system is in a state described byΨ, the chance to find eigenvalue an when measuring A is
given by |cn|2 in the discrete part of the spectrum and |cn|2da in the continuous part of the spectrum between
a and a + da. The matrix elementAij is given by: Aij = 〈ui|A|uj〉. Because (AB)ij = 〈ui|AB|uj〉 =
〈ui|A

∑
n
|un〉 〈un|B|uj〉 holds:

∑
n
|un〉〈un| = 1.

The time-dependence of an operator is given by (Heisenberg):

dA

dt
=

∂A

∂t
+
[A,H ]
ih̄

with [A,B] ≡ AB − BA the commutatorof A and B. For hermitian operators the commutator is always
complex. If [A,B] = 0, the operators A and B have a common set of eigenfunctions. By applying this to p x

and x follows (Ehrenfest): md2 〈x〉t /dt2 = −〈dU(x)/dx〉.
The first order approximation 〈F (x)〉t ≈ F (〈x〉), with F = −dU/dx represents the classical equation.

Before the addition of quantummechanical operators which are a product of other operators, they should be
made symmetrical: a classical product AB becomes 12 (AB +BA).

10.4 The uncertainty principle

If the uncertainty∆A in A is defined as: (∆A)2 =
〈
ψ|Aop − 〈A〉 |2ψ

〉
=
〈
A2
〉− 〈A〉2 it follows:

∆A ·∆B ≥ 1
2 | 〈ψ|[A,B]|ψ〉 |

From this follows: ∆E ·∆t ≥ 1
2 h̄, and because [x, px] = ih̄ holds: ∆px ·∆x ≥ 1

2 h̄, and∆Lx ·∆Ly ≥ 1
2 h̄Lz.

10.5 The Schrödinger equation

The momentum operator is given by: pop = −ih̄∇. The position operator is: xop = ih̄∇p. The energy
operator is given by: Eop = ih̄∂/∂t. The Hamiltonian of a particle with mass m, potential energy U and total
energy E is given by: H = p2/2m+ U . From Hψ = Eψ then follows the Schr̈odinger equation:

− h̄2

2m
∇2ψ + Uψ = Eψ = ih̄

∂ψ

∂t

The linear combination of the solutions of this equation give the general solution. In one dimension it is:

ψ(x, t) =
(∑

+
∫

dE

)
c(E)uE(x) exp

(
− iEt

h̄

)

The current density J is given by: J =
h̄

2im
(ψ∗∇ψ − ψ∇ψ∗)

The following conservation law holds:
∂P (x, t)

∂t
= −∇J(x, t)

10.6 Parity

The parity operator in one dimension is given by Pψ(x) = ψ(−x). If the wavefunction is split in even and
odd functions, it can be expanded into eigenfunctions of P :

ψ(x) = 1
2 (ψ(x) + ψ(−x))︸ ︷︷ ︸

even: ψ+

+ 1
2 (ψ(x)− ψ(−x))︸ ︷︷ ︸

odd: ψ−

[P , H ] = 0. The functions ψ+ = 1
2 (1 + P)ψ(x, t) and ψ− = 1

2 (1 − P)ψ(x, t) both satisfy the Schrödinger
equation. Hence, parity is a conserved quantity.
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10.7 The tunnel effect

The wavefunction of a particle in an ∞ high potential step from x = 0 to x = a is given by ψ(x) =
a−1/2 sin(kx). The energylevels are given by En = n2h2/8a2m.

If the wavefunction with energy W meets a potential well of W0 > W the wavefunction will, unlike the
classical case, be non-zero within the potential well. If 1, 2 and 3 are the areas in front, within and behind the
potential well, holds:

ψ1 = Aeikx +Be−ikx , ψ2 = Ceik
′x +De−ik′x , ψ3 = A′eikx

with k′2 = 2m(W −W0)/h̄2 and k2 = 2mW . Using the boundary conditions requiring continuity: ψ =
continuous and ∂ψ/∂x =continuous at x = 0 and x = a gives B, C and D and A ′ expressed in A. The
amplitude T of the transmitted wave is defined by T = |A ′|2/|A|2. If W > W0 and 2a = nλ′ = 2πn/k′

holds: T = 1.

10.8 The harmonic oscillator

For a harmonic oscillator holds: U = 1
2bx

2 and ω20 = b/m. The Hamiltonian H is then given by:

H =
p2

2m
+ 1
2mω2x2 = 1

2 h̄ω + ωA†A

with

A =
√
1
2mωx+

ip√
2mω

and A† =
√
1
2mωx− ip√

2mω

A �= A† is non hermitian. [A,A†] = h̄ and [A,H ] = h̄ωA. A is a so called raising ladder operator, A† a
lowering ladder operator. HAuE = (E − h̄ω)AuE . There is an eigenfunction u0 for which holds: Au0 = 0.
The energy in this ground state is 12 h̄ω: the zero point energy. For the normalized eigenfunctions follows:

un =
1√
n!

(
A†
√
h̄

)n
u0 with u0 = 4

√
mω

πh̄
exp
(
−mωx2

2h̄

)

with En = (12 + n)h̄ω.

10.9 Angular momentum

For the angular momentum operators L holds: [L z, L
2] = [Lz, H ] = [L2, H ] = 0. However, cyclically holds:

[Lx, Ly] = ih̄Lz . Not all components of L can be known at the same time with arbitrary accuracy. For L z

holds:

Lz = −ih̄
∂

∂ϕ
= −ih̄

(
x

∂

∂y
− y

∂

∂x

)
The ladder operators L± are defined by: L± = Lx ± iLy. Now holds: L2 = L+L− + L2z − h̄Lz. Further,

L± = h̄e±iϕ

(
± ∂

∂θ
+ i cot(θ)

∂

∂ϕ

)

From [L+, Lz] = −h̄L+ follows: Lz(L+Ylm) = (m+ 1)h̄(L+Ylm).

From [L−, Lz] = h̄L− follows: Lz(L−Ylm) = (m− 1)h̄(L−Ylm).

From [L2, L±] = 0 follows: L2(L±Ylm) = l(l+ 1)h̄2(L±Ylm).

Because Lx and Ly are hermitian (this implies L†
± = L∓) and |L±Ylm|2 > 0 follows: l(l + 1)−m2 −m ≥

0 ⇒ −l ≤ m ≤ l. Further follows that l has to be integral or half-integral. Half-odd integral values give no
unique solution ψ and are therefore dismissed.
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10.10 Spin

For the spin operators are defined by their commutation relations: [S x, Sy] = ih̄Sz . Because the spin operators
do not act in the physical space (x, y, z) the uniqueness of the wavefunction is not a criterium here: also half
odd-integer values are allowed for the spin. Because [L, S] = 0 spin and angular momentum operators do not

have a common set of eigenfunctions. The spin operators are given by ��S = 1
2 h̄

��σ, with

��σx =
(
0 1
1 0

)
, ��σy =

(
0 −i
i 0

)
, ��σz =

(
1 0
0 −1

)
The eigenstates of Sz are called spinors: χ = α+χ+ + α−χ−, where χ+ = (1, 0) represents the state with
spin up (Sz = 1

2 h̄) and χ− = (0, 1) represents the state with spin down (Sz = − 12 h̄). Then the probability
to find spin up after a measurement is given by |α+|2 and the chance to find spin down is given by |α−|2. Of
course holds |α+|2 + |α−|2 = 1.

The electron will have an intrinsic magnetic dipole moment �M due to its spin, given by �M = −egS �S/2m,
with gS = 2(1 + α/2π + · · ·) the gyromagnetic ratio. In the presence of an external magnetic field this gives
a potential energy U = − �M · �B. The Schrödinger equation then becomes (because ∂χ/∂x i ≡ 0):

ih̄
∂χ(t)
∂t

=
egSh̄

4m
�σ · �Bχ(t)

with �σ = (��σx, ��σy, ��σz). If �B = B�ez there are two eigenvalues for this problem: χ± for E = ±egSh̄B/4m =
±h̄ω. So the general solution is given by χ = (ae−iωt, beiωt). From this can be derived: 〈Sx〉 = 1

2 h̄ cos(2ωt)
and 〈Sy〉 = 1

2 h̄ sin(2ωt). Thus the spin precesses about the z-axis with frequency 2ω. This causes the normal
Zeeman splitting of spectral lines.

The potential operator for two particles with spin ± 1
2 h̄ is given by:

V (r) = V1(r) +
1
h̄2
(�S1 · �S2)V2(r) = V1(r) + 1

2V2(r)[S(S + 1)− 3
2 ]

This makes it possible for two states to exist: S = 1 (triplet) or S = 0 (Singlet).

10.11 The Dirac formalism

If the operators for p and E are substituted in the relativistic equation E 2 = m20c
4 + p2c2, the Klein-Gordon

equation is found: (
∇2 − 1

c2
∂2

∂t2
− m20c

2

h̄2

)
ψ(�x, t) = 0

The operator ✷−m20c
2/h̄2 can be separated:

∇2 − 1
c2

∂2

∂t2
− m20c

2

h̄2
=
{
γλ

∂

∂xλ
− m0c

h̄

}{
γµ

∂

∂xµ
+

m0c

h̄

}
where the Dirac matrices γ are given by: {γλ, γµ} = γλγµ + γµγλ = 2δλµ (In general relativity this becomes
2gλµ). From this it can be derived that the γ are hermitian 4× 4 matrices given by:

γk =
(

0 −iσk
iσk 0

)
, γ4 =

(
I 0
0 −I

)
With this, the Dirac equation becomes:(

γλ
∂

∂xλ
+

m0c

h̄

)
ψ(�x, t) = 0

where ψ(x) = (ψ1(x), ψ2(x), ψ3(x), ψ4(x)) is a spinor.
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10.12 Atomic physics

10.12.1 Solutions

The solutions of the Schrödinger equation in spherical coordinates if the potential energy is a function of r
alone can be written as: ψ(r, θ, ϕ) = Rnl(r)Yl,ml

(θ, ϕ)χms , with

Ylm =
Clm√
2π

Pm
l (cos θ)e

imϕ

For an atom or ion with one electron holds: R lm(ρ) = Clme−ρ/2ρlL2l+1n−l−1(ρ)

with ρ = 2rZ/na0 with a0 = ε0h
2/πmee

2. The Lj
i are the associated Laguere functions and the P m

l are the
associated Legendre polynomials:

P
|m|
l (x) = (1− x2)m/2 d|m|

dx|m|
[
(x2 − 1)l] , Lm

n (x) =
(−1)mn!
(n−m)!

e−xx−m dn−m

dxn−m
(e−xxn)

The parity of these solutions is (−1)l. The functions are 2
n−1∑
l=0

(2l + 1) = 2n2-folded degenerated.

10.12.2 Eigenvalue equations

The eigenvalue equations for an atom or ion with with one electron are:

Equation Eigenvalue Range

Hopψ = Eψ En = µe4Z2/8ε20h2n2 n ≥ 1
LzopYlm = LzYlm Lz = mlh̄ −l ≤ ml ≤ l

L2opYlm = L2Ylm L2 = l(l+ 1)h̄2 l < n

Szopχ = Szχ Sz = msh̄ ms = ± 12
S2opχ = S2χ S2 = s(s+ 1)h̄2 s = 1

2

10.12.3 Spin-orbit interaction

The total momentum is given by �J = �L + �M . The total magnetic dipole moment of an electron is then
�M = �ML + �MS = −(e/2me)(�L + gS �S) where gS = 2.0023 is the gyromagnetic ratio of the electron.

Further holds: J 2 = L2 + S2 + 2�L · �S = L2 + S2 + 2LzSz + L+S− + L−S+. J has quantum numbers j
with possible values j = l ± 1

2 , with 2j + 1 possible z-components (mJ ∈ {−j, .., 0, .., j}). If the interaction

energy between S and L is small it can be stated that: E = En + ESL = En + a�S · �L. It can then be derived
that:

a =
|En|Z2α2

h̄2nl(l + 1)(l + 1
2 )

After a relativistic correction this becomes:

E = En +
|En|Z2α2

n

(
3
4n

− 1
j + 1

2

)

The fine structurein atomic spectra arises from this. With gS = 2 follows for the average magnetic moment:
�Mav = −(e/2me)gh̄ �J , where g is the Landé-factor:

g = 1 +
�S · �J
J2

= 1 +
j(j + 1) + s(s+ 1)− l(l + 1)

2j(j + 1)

For atoms with more than one electron the following limiting situations occur:
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1. L − S coupling: for small atoms the electrostatic interaction is dominant and the state can be char-
acterized by L, S, J,mJ . J ∈ {|L − S|, ..., L + S − 1, L + S} and mJ ∈ {−J, ..., J − 1, J}. The
spectroscopic notation for this interaction is: 2S+1LJ . 2S + 1 is the multiplicity of a multiplet.

2. j − j coupling: for larger atoms the electrostatic interaction is smaller than the L i · si interaction of
an electron. The state is characterized by ji...jn, J,mJ where only the ji of the not completely filled
subshells are to be taken into account.

The energy difference for larger atoms when placed in a magnetic field is: ∆E = gµBmJB where g is the
Landé factor. For a transition between two singlet states the line splits in 3 parts, for∆m J = −1, 0 + 1. This
results in the normal Zeeman effect. At higher S the line splits up in more parts: the anomalous Zeeman effect.

Interaction with the spin of the nucleus gives the hyperfine structure.

10.12.4 Selection rules

For the dipole transition matrix elements follows: p0 ∼ |〈l2m2| �E · �r |l1m1〉|. Conservation of angular mo-
mentum demands that for the transition of an electron holds that∆l = ±1.

For an atom where L − S coupling is dominant further holds: ∆S = 0 (but not strict), ∆L = 0,±1, ∆J =
0,±1 except for J = 0→ J = 0 transitions,∆mJ = 0,±1, but∆mJ = 0 is forbidden if ∆J = 0.

For an atom where j − j coupling is dominant further holds: for the jumping electron holds, except∆l = ±1,
also: ∆j = 0,±1, and for all other electrons: ∆j = 0. For the total atom holds: ∆J = 0,±1 but no
J = 0→ J = 0 transitions and∆mJ = 0,±1, but∆mJ = 0 is forbidden if ∆J = 0.

10.13 Interaction with electromagnetic fields

The Hamiltonian of an electron in an electromagnetic field is given by:

H =
1
2µ
(�p+ e �A)2 − eV = − h̄2

2µ
∇2 + e

2µ
�B · �L+ e2

2µ
A2 − eV

where µ is the reduced mass of the system. The term ∼ A2 can usually be neglected, except for very strong
fields or macroscopic motions. For �B = B�ez it is given by e2B2(x2 + y2)/8µ.

When a gauge transformation �A′ = �A − ∇f , V ′ = V + ∂f/∂t is applied to the potentials the wavefunction
is also transformed according to ψ ′ = ψeiqef/h̄ with qe the charge of the particle. Because f = f(x, t), this
is called a local gauge transformation, in contrast with a global gauge transformation which can always be
applied.

10.14 Perturbation theory

10.14.1 Time-independent perturbation theory

To solve the equation (H0+λH1)ψn = Enψn one has to find the eigenfunctions of H = H0+λH1. Suppose
that φn is a complete set of eigenfunctions of the non-perturbed Hamiltonian H 0: H0φn = E0nφn. Because
φn is a complete set holds:

ψn = N(λ)


φn +

∑
k �=n

cnk(λ)φk




When cnk and En are being expanded into λ: cnk = λc
(1)
nk + λ2c

(2)
nk + · · ·

En = E0n + λE
(1)
n + λ2E

(2)
n + · · ·
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and this is put into the Schrödinger equation the result is: E (1)n = 〈φn|H1|φn〉 and

c(1)nm =
〈φm|H1|φn〉
E0n − E0m

if m �= n. The second-order correction of the energy is then given by:

E(2)n =
∑
k �=n

| 〈φk|H1|φn〉 |2
E0n − E0k

. So to first order holds: ψn = φn +
∑
k �=n

〈φk|λH1|φn〉
E0n − E0k

φk.

In case the levels are degenerated the above does not hold. In that case an orthonormal set eigenfunctions φ ni

is chosen for each level n, so that 〈φmi|φnj〉 = δmnδij . Now ψ is expanded as:

ψn = N(λ)


∑

i

αiφni + λ
∑
k �=n

c
(1)
nk

∑
i

βiφki + · · ·



Eni = E0ni + λE
(1)
ni is approximated by E0ni := E0n. Substitution in the Schrödinger equation and taking dot

product with φni gives:
∑
i

αi 〈φnj |H1|φni〉 = E
(1)
n αj . Normalization requires that

∑
i

|αi|2 = 1.

10.14.2 Time-dependent perturbation theory

From the Schrödinger equation ih̄
∂ψ(t)
∂t

= (H0 + λV (t))ψ(t)

and the expansion ψ(t) =
∑
n

cn(t) exp
(−iE0nt

h̄

)
φn with cn(t) = δnk + λc

(1)
n (t) + · · ·

follows: c(1)n (t) =
λ

ih̄

t∫
0

〈φn|V (t′)|φk〉 exp
(
i(E0n − E0k)t

′

h̄

)
dt′

10.15 N-particle systems

10.15.1 General

Identical particles are indistinguishable. For the total wavefunction of a system of identical indistinguishable
particles holds:

1. Particles with a half-odd integer spin (Fermions): ψ total must be antisymmetric w.r.t. interchange of
the coordinates (spatial and spin) of each pair of particles. The Pauli principle results from this: two
Fermions cannot exist in an identical state because then ψtotal = 0.

2. Particles with an integer spin (Bosons): ψtotal must be symmetric w.r.t. interchange of the coordinates
(spatial and spin) of each pair of particles.

For a system of two electrons there are 2 possibilities for the spatial wavefunction. When a and b are the
quantum numbers of electron 1 and 2 holds:

ψS(1, 2) = ψa(1)ψb(2) + ψa(2)ψb(1) , ψA(1, 2) = ψa(1)ψb(2)− ψa(2)ψb(1)

Because the particles do not approach each other closely the repulsion energy at ψA in this state is smaller.
The following spin wavefunctions are possible:

χA = 1
2

√
2[χ+(1)χ−(2)− χ+(2)χ−(1)] ms = 0

χS =




χ+(1)χ+(2) ms = +1
1
2

√
2[χ+(1)χ−(2) + χ+(2)χ−(1)] ms = 0

χ−(1)χ−(2) ms = −1
Because the total wavefunction must be antisymmetric it follows: ψ total = ψSχA or ψtotal = ψAχS.
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For N particles the symmetric spatial function is given by:

ψS(1, ..., N) =
∑

ψ(all permutations of 1..N)

The antisymmetric wavefunction is given by the determinant ψA(1, ..., N) =
1√
N !
|uEi(j)|

10.15.2 Molecules

The wavefunctions of atom a and b are φa and φb. If the 2 atoms approach each other there are two possibilities:
the total wavefunction approaches the bonding function with lower total energy ψ B = 1

2

√
2(φa + φb) or

approaches the anti-bonding function with higher energy ψAB = 1
2

√
2(φa − φb). If a molecular-orbital is

symmetric w.r.t. the connecting axis, like a combination of two s-orbitals it is called a σ-orbital, otherwise a
π-orbital, like the combination of two p-orbitals along two axes.

The energy of a system is: E =
〈ψ|H |ψ〉
〈ψ|ψ〉 .

The energy calculated with this method is always higherthan the real energy if ψ is only an approximation for
the solutions of Hψ = Eψ. Also, if there are more functions to be chosen, the function which gives the lowest
energy is the best approximation. Applying this to the function ψ =

∑
ciφi one finds: (Hij − ESij)ci = 0.

This equation has only solutions if the secular determinant|H ij − ESij | = 0. Here, Hij = 〈φi|H |φj〉 and
Sij = 〈φi|φj〉. αi := Hii is the Coulomb integral and βij := Hij the exchange integral. Sii = 1 and Sij is
the overlap integral.

The first approximation in the molecular-orbital theory is to place both electrons of a chemical bond in the
bonding orbital: ψ(1, 2) = ψB(1)ψB(2). This results in a large electron density between the nuclei and
therefore a repulsion. A better approximation is: ψ(1, 2) = C1ψB(1)ψB(2)+C2ψAB(1)ψAB(2), with C1 = 1
and C2 ≈ 0.6.

In some atoms, such as C, it is energetical more suitable to form orbitals which are a linear combination of the
s, p and d states. There are three ways of hybridization in C:

1. SP-hybridization: ψsp = 1
2

√
2(ψ2s ± ψ2pz

). There are 2 hybrid orbitals which are placed on one line
under 180◦. Further the 2px and 2py orbitals remain.

2. SP2 hybridization: ψsp2 = ψ2s/
√
3+ c1ψ2pz

+ c2ψ2py
, where (c1, c2) ∈ {(

√
2/3, 0), (−1/√6, 1/√2)

, (−1/√6,−1/√2)}. The 3 SP2 orbitals lay in one plane, with symmetry axes which are at an angle of
120◦.

3. SP3 hybridization: ψsp3 = 1
2 (ψ2s±ψ2pz

±ψ2py
±ψ2px

). The 4 SP3 orbitals form a tetraheder with the
symmetry axes at an angle of 109◦28′.

10.16 Quantum statistics

If a system exists in a state in which one has not the disposal of the maximal amount of information about the
system, it can be described by a density matrixρ. If the probability that the system is in state ψ i is given by ai,
one can write for the expectation value a of A: 〈a〉 = ∑

i

ri〈ψi|A|ψi〉.

If ψ is expanded into an orthonormal basis {φk} as: ψ(i) =
∑
k

c
(i)
k φk, holds:

〈A〉 =
∑
k

(Aρ)kk = Tr(Aρ)

where ρlk = c∗kcl. ρ is hermitian, with Tr(ρ) = 1. Further holds ρ =
∑

ri|ψi〉〈ψi|. The probability to find
eigenvalue an when measuring A is given by ρnn if one uses a basis of eigenvectors of A for {φk}. For the
time-dependence holds (in the Schrödinger image operators are not explicitly time-dependent):

ih̄
dρ

dt
= [H, ρ]
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For a macroscopic system in equilibrium holds [H, ρ] = 0. If all quantumstates with the same energy are
equally probable: Pi = P (Ei), one can obtain the distribution:

Pn(E) = ρnn =
e−En/kT

Z
with the state sum Z =

∑
n

e−En/kT

The thermodynamic quantities are related to these definitions as follows: F = −kT ln(Z), U = 〈H〉 =∑
n

pnEn = − ∂

∂kT
ln(Z), S = −k

∑
n

Pn ln(Pn). For a mixed state of M orthonormal quantum states with

probability 1/M follows: S = k ln(M).

The distribution function for the internal states for a system in thermal equilibrium is the most probable func-
tion. This function can be found by taking the maximum of the function which gives the number of states with
Stirling’s equation: ln(n!) ≈ n ln(n) − n, and the conditions

∑
k

nk = N and
∑
k

nkWk = W . For identical,

indistinguishable particles which obey the Pauli exclusion principle the possible number of states is given by:

P =
∏
k

gk!
nk!(gk − nk)!

This results in the Fermi-Dirac statistics. For indistinguishable particles which do not obey the exclusion
principle the possible number of states is given by:

P = N !
∏
k

gnk

k

nk!

This results in the Bose-Einstein statistics. So the distribution functions which explain how particles are
distributed over the different one-particle states k which are each g k-fold degenerate depend on the spin of the
particles. They are given by:

1. Fermi-Dirac statistics: integer spin. nk ∈ {0, 1}, nk =
N

Zg

gk
exp((Ek − µ)/kT ) + 1

with ln(Zg) =
∑

gk ln[1 + exp((Ei − µ)/kT )].

2. Bose-Einstein statistics: half odd-integer spin. nk ∈ IN , nk =
N

Zg

gk
exp((Ek − µ)/kT )− 1

with ln(Zg) = −∑ gk ln[1 − exp((Ei − µ)/kT )].

Here, Zg is the large-canonical state sum and µ the chemical potential. It is found by demanding
∑

nk = N ,
and for it holds: lim

T→0
µ = EF, the Fermi-energy. N is the total number of particles. The Maxwell-Boltzmann

distribution can be derived from this in the limit Ek − µ� kT :

nk =
N

Z
exp
(
−Ek

kT

)
with Z =

∑
k

gk exp
(
−Ek

kT

)

With the Fermi-energy, the Fermi-Dirac and Bose-Einstein statistics can be written as:

1. Fermi-Dirac statistics: nk =
gk

exp((Ek − EF)/kT ) + 1
.

2. Bose-Einstein statistics: nk =
gk

exp((Ek − EF)/kT )− 1 .
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Plasma physics

11.1 Introduction

The degree of ionizationα of a plasma is defined by: α =
ne

ne + n0

where ne is the electron density and n0 the density of the neutrals. If a plasma contains also negative charged
ions α is not well defined.

The probability that a test particle collides with another is given by dP = nσdx where σ is the cross section.
The collision frequency νc = 1/τc = nσv. The mean free pathis given by λv = 1/nσ. The rate coefficient
K is defined by K = 〈σv〉. The number of collisions per unit of time and volume between particles of kind 1
and 2 is given by n1n2 〈σv〉 = Kn1n2.

The potential of an electron is given by:

V (r) =
−e

4πε0r
exp
(
− r

λD

)
with λD =

√
ε0kTeTi

e2(neTi + niTe)
≈
√

ε0kTe
nee2

because charge is shielded in a plasma. Here, λD is the Debye length. For distances < λD the plasma
cannot be assumed to be quasi-neutral. Deviations of charge neutrality by thermic motion are compensated by
oscillations with frequency

ωpe =

√
nee2

meε0

The distance of closest approximation when two equal charged particles collide for a deviation of π/2 is

2b0 = e2/(4πε0 12mv2). A “neat” plasma is defined as a plasma for which holds: b0 < n
−1/3
e � λD � Lp.

Here Lp := |ne/∇ne| is the gradient length of the plasma.

11.2 Transport

Relaxation times are defined as τ = 1/νc. Starting with σm = 4πb20 ln(ΛC) and with 1
2mv2 = kT it can be

found that:

τm =
4πε20m

2v3

ne4 ln(ΛC)
=
8
√
2πε20

√
m(kT )3/2

ne4 ln(ΛC)
For momentum transfer between electrons and ions holds for a Maxwellian velocity distribution:

τee =
6π
√
3ε20

√
me(kTe)3/2

nee4 ln(ΛC)
≈ τei , τii =

6π
√
3ε20

√
mi(kTi)3/2

nie4 ln(ΛC)

The energy relaxation times for identical particles are equal to the momentum relaxation times. Because for
e-i collisions the energy transfer is only ∼ 2me/mi this is a slow process. Approximately holds: τee : τei :
τie : τEie = 1 : 1 :

√
mi/me : mi/me.

The relaxation for e-o interaction is much more complicated. For T > 10 eV holds approximately: σ eo =
10−17v−2/5e , for lower energies this can be a factor 10 lower.

The resistivity η = E/J of a plasma is given by:

η =
nee

2

meνei
=

e2
√
me ln(ΛC)

6π
√
3ε20(kTe)3/2



Chapter 11: Plasma physics 55

The diffusion coefficient D is defined by means of the flux Γ by �Γ = n�vdiff = −D∇n. The equation
of continuity is ∂tn +∇(nvdiff) = 0 ⇒ ∂tn = D∇2n. One finds that D = 1

3λvv. A rough estimate gives
τD = Lp/D = L2pτc/λ

2
v. For magnetized plasma’s λv must be replaced with the cyclotron radius. In electrical

fields also holds �J = neµ�E = e(neµe + niµi) �E with µ = e/mνc the mobility of the particles. The Einstein
ratio is:

D

µ
=

kT

e

Because a plasma is electrically neutral electrons and ions are strongly coupled and they don’t diffuse inde-
pendent. The coefficient of ambipolar diffusionDamb is defined by �Γ = �Γi = �Γe = −Damb∇ne,i. From this
follows that

Damb =
kTe/e− kTi/e

1/µe − 1/µi ≈ kTeµi
e

In an external magnetic field B0 particles will move in spiral orbits with cyclotron radiusρ = mv/eB0
and with cyclotron frequency Ω = B0e/m. The helical orbit is perturbed by collisions. A plasma is called
magnetizedif λv > ρe,i. So the electrons are magnetized if

ρe
λee

=
√
mee

3ne ln(ΛC)
6π
√
3ε20(kTe)3/2B0

< 1

Magnetization of only the electrons is sufficient to confine the plasma reasonable because they are coupled
to the ions by charge neutrality. In case of magnetic confinement holds: ∇p = �J × �B. Combined with the
two stationary Maxwell equations for the B-field these form the ideal magneto-hydrodynamic equations. For
a uniform B-field holds: p = nkT = B2/2µ0.

If both magnetic and electric fields are present electrons and ions will move in the same direction. If �E =
Er�er + Ez�ez and �B = Bz�ez the �E × �B drift results in a velocity �u = ( �E × �B )/B2 and the velocity in the
r, ϕ plane is ṙ(r, ϕ, t) = �u+ �̇ρ(t).

11.3 Elastic collisions

11.3.1 General

The scattering angle of a particle in interaction with another
particle, as shown in the figure at the right is:

χ = π − 2b
∞∫

ra

dr

r2

√
1− b2

r2
− W (r)

E0

Particles with an impact parameter between b and b + db,
moving through a ring with dσ = 2πbdb leave the scattering
area at a solid angle dΩ = 2π sin(χ)dχ. The differential
cross sectionis then defined as:

I(Ω) =
∣∣∣∣ dσdΩ
∣∣∣∣ = b

sin(χ)
∂b

∂χ

✻❄

❅❅�❘

χ

M

b

b

ra
ϕ

For a potential energy W (r) = kr−n follows: I(Ω, v) ∼ v−4/n.

For low energies,O(1 eV), σ has a Ramsauer minimum. It arises from the interference of matter waves behind
the object. I(Ω) for angles 0 < χ < λ/4 is larger than the classical value.
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11.3.2 The Coulomb interaction

For the Coulomb interaction holds: 2b0 = q1q2/2πε0mv20 , so W (r) = 2b0/r. This gives b = b0 cot( 12χ) and

I(Ω =
b

sin(χ)
∂b

∂χ
=

b20
4 sin2(12χ)

Because the influence of a particle vanishes at r = λD holds: σ = π(λ2D − b20). Because dp = d(mv) =
mv0(1 − cosχ) a cross section related to momentum transfer σm is given by:

σm =
∫
(1 − cosχ)I(Ω)dΩ = 4πb20 ln

(
1

sin(12χmin)

)
= 4πb20 ln

(
λD
b0

)
:= 4πb20 ln(ΛC) ∼

ln(v4)
v4

where ln(ΛC) is the Coulomb-logarithm. For this quantity holds: ΛC = λD/b0 = 9n(λD).

11.3.3 The induced dipole interaction

The induced dipole interaction, with �p = α �E, gives a potential V and an energy W in a dipole field given by:

V (r) =
�p · �er
4πε0r2

, W (r) = − |e|p
8πε0r2

= − αe2

2(4πε0)2r4

with ba = 4

√
2e2α

(4πε0)2 12mv20
holds: χ = π − 2b

∞∫
ra

dr

r2

√
1− b2

r2
+

b4a
4r4

If b ≥ ba the charge would hit the atom. Repulsing nuclear forces prevent this to happen. If the scattering
angle is a lot times 2π it is called capture. The cross section for capture σorb = πb2a is called the Langevin
limit, and is a lowest estimate for the total cross section.

11.3.4 The centre of mass system

If collisions of two particles with masses m1 and m2 which scatter in the centre of mass system by an angle χ
are compared with the scattering under an angle θ in the laboratory system holds:

tan(θ) =
m2 sin(χ)

m1 +m2 cos(χ)

The energy loss ∆E of the incoming particle is given by:

∆E

E
=
1
2m2v

2
2

1
2m1v

2
1

=
2m1m2

(m1 +m2)2
(1− cos(χ))

11.3.5 Scattering of light

Scattering of light by free electrons is called Thomson scattering. The scattering is free from collective effects
if kλD � 1. The cross section σ = 6.65 · 10−29m2 and

∆f

f
=
2v
c
sin(12χ)

This gives for the scattered energy Escat ∼ nλ40/(λ
2−λ20)

2 with n the density. If λ � λ0 it is called Rayleigh
scattering. Thomson sccattering is a limit of Compton scattering, which is given by λ ′ − λ = λC(1 − cosχ)
with λC = h/mc and cannot be used any more if relativistic effects become important.



Chapter 11: Plasma physics 57

11.4 Thermodynamic equilibrium and reversibility

Planck’s radiation law and the Maxwellian velocity distribution hold for a plasma in equilibrium:

ρ(ν, T )dν =
8πhν3

c3
1

exp(hν/kT )− 1dν , N(E, T )dE =
2πn

(πkT )3/2
√
E exp

(
− E

kT

)
dE

“Detailed balancing” means that the number of reactions in one direction equals the number of reactions in the
opposite direction because both processes have equal probability if one corrects for the used phase space. For
the reaction ∑

forward

Xforward ←→
∑
back

Xback

holds in a plasma in equilibrium microscopicreversibility:∏
forward

η̂forward =
∏
back

η̂back

If the velocity distribution is Maxwellian, this gives:

η̂x =
nx
gx

h3

(2πmxkT )3/2
e−Ekin/kT

where g is the statistical weight of the state and n/g := η. For electrons holds g = 2, for excited states usually
holds g = 2j + 1 = 2n2.

With this one finds for the Boltzmann balance, Xp + e− ←→ X1 + e− + (E1p):

nBp
n1

=
gp
g1
exp
(
Ep − E1

kTe

)

And for the Saha balance, Xp + e− + (Epi)←→ X+1 + 2e
−:

nSp
gp
=

n+1
g+1

ne
ge

h3

(2πmekTe)3/2
exp
(
Epi

kTe

)

Because the number of particles on the left-hand side and right-hand side of the equation is different, a factor
g/Ve remains. This factor causes the Saha-jump.

From microscopic reversibility one can derive that for the rate coefficients K(p, q, T ) := 〈σv〉 pq holds:

K(q, p, T ) =
gp
gq

K(p, q, T ) exp
(
∆Epq

kT

)

11.5 Inelastic collisions

11.5.1 Types of collisions

The kinetic energy can be split in a part of and a part in the centre of mass system. The energy in the centre of
mass system is available for reactions. This energy is given by

E =
m1m2(v1 − v2)2

2(m1 +m2)

Some types of inelastic collisions important for plasma physics are:

1. Excitation: Ap + e− ←→ Aq + e−

2. Decay: Aq ←→ Ap + hf
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3. Ionisation and 3-particles recombination: Ap + e− ←→ A+ + 2e−

4. radiative recombination: A+ + e− ←→ Ap + hf

5. Stimulated emission: Aq + hf → Ap + 2hf

6. Associative ionisation: A∗∗ +B←→ AB+ + e−

7. Penning ionisation: b.v. Ne∗ +Ar←→ Ar+ +Ne + e−

8. Charge transfer: A+ +B←→ A+ B+

9. Resonant charge transfer: A+ +A←→ A+A+

11.5.2 Cross sections

Collisions between an electron and an atom can be approximated by a collision between an electron and one
of the electrons of that atom. This results in

dσ

d(∆E)
=

πZ2e4

(4πε0)2E(∆E)2

Then follows for the transition p→ q: σpq(E) =
πZ2e4∆Eq,q+1

(4πε0)2E(∆E)2pq

For ionization from state p holds to a good approximation: σ p = 4πa20Ry

(
1
Ep

− 1
E

)
ln
(
1.25βE

Ep

)

For resonant charge transfer holds: σex =
A[1−B ln(E)]2

1 + CE3.3

11.6 Radiation

In equilibrium holds for radiation processes:

npApq︸ ︷︷ ︸
emission

+ npBpqρ(ν, T )︸ ︷︷ ︸
stimulated emission

= nqBqpρ(ν, T )︸ ︷︷ ︸
absorption

Here, Apq is the matrix element of the transition p→ q, and is given by:

Apq =
8π2e2ν3|rpq |2

3h̄ε0c3
with rpq = 〈ψp|�r |ψq〉

For hydrogenic atoms holds: Ap = 1.58 · 108Z4p−4.5, with Ap = 1/τp =
∑
q
Apq . The intensity I of a line is

given by Ipq = hfApqnp/4π. The Einstein coefficients B are given by:

Bpq =
c3Apq

8πhν3
and

Bpq

Bqp
=

gq
gp

A spectral line is broadened by several mechanisms:

1. Because the states have a finite life time. The natural life time of a state p is given by τp = 1/
∑
q
Apq .

From the uncertainty relation then follows: ∆(hν) · τp = 1
2 h̄, this gives

∆ν =
1

4πτp
=

∑
q
Apq

4π

The natural line width is usually � than the broadening due to the following two mechanisms:
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2. The Doppler broadening is caused by the thermal motion of the particles:

∆λ

λ
=
2
c

√
2 ln(2)kTi

mi

This broadening results in a Gaussian line profile:
kν = k0 exp(−[2

√
ln 2(ν − ν0)/∆νD]2), with k the coefficient of absorption or emission.

3. The Stark broadening is caused by the electric field of the electrons:

∆λ1/2 =
[

ne
C(ne, Te)

]2/3

with for the H-β line: C(ne, Te) ≈ 3 · 1014Å−3/2cm−3.

The natural broadening and the Stark broadening result in a Lorentz profile of a spectral line:
kν = 1

2k0∆νL/[(12∆νL)2+(ν− ν0)2]. The total line shape is a convolution of the Gauss- and Lorentz profile
and is called a Voigt profile.

The number of transitions p → q is given by npBpqρ and by npnhf 〈σac〉 = np(ρdν/hν)σac where dν is the
line width. Then follows for the cross section of absorption processes: σ a = Bpqhν/cdν.

The background radiation in a plasma originates from two processes:

1. Free-Bound radiation, originating from radiative recombination. The emission is given by:

εfb =
C1
λ2

zinine√
kTe

[
1− exp

(
− hc

λkTe

)]
ξfb(λ, Te)

with C1 = 1.63 · 10−43 Wm4K1/2sr−1 and ξ the Biberman factor.

2. Free-free radiation, originating from the acceleration of particles in the EM-field of other particles:

εff =
C1
λ2

zinine√
kTe

exp
(
− hc

λkTe

)
ξff (λ, Te)

11.7 The Boltzmann transport equation

It is assumed that there exists a distribution function F for the plasma so that

F (�r, �v, t) = Fr(�r, t) · Fv(�v, t) = F1(x, t)F2(y, t)F3(z, t)F4(vx, t)F5(vy, t)F6(vz , t)

Then the BTE is:
dF

dt
=

∂F

∂t
+∇r · (F�v ) +∇v · (F�a ) =

(
∂F

∂t

)
coll−rad

Assuming that v does not depend on r and a i does not depend on vi, holds∇r ·(F�v ) = �v·∇F and∇v ·(F�a ) =
�a · ∇vF . This is also true in magnetic fields because ∂ai/∂xi = 0. The velocity is separated in a thermal
velocity �vt and a drift velocity �w. The total density is given by n =

∫
Fd�v and

∫
�vFd�v = n�w.

The balance equations can be derived by means of the moment method:

1. Mass balance:
∫
(BTE)d�v ⇒ ∂n

∂t
+∇ · (n�w) =

(
∂n

∂t

)
cr

2. Momentum balance:
∫
(BTE)m�vd�v ⇒ mn

d�w

dt
+∇T′ +∇p = mn 〈�a 〉+ �R

3. Energy balance:
∫
(BTE)mv2d�v ⇒ 3

2
dp

dt
+
5
2
p∇ · �w +∇ · �q = Q
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Here, 〈�a 〉 = e/m( �E + �w × �B ) is the average acceleration, �q = 1
2nm

〈
�v 2t �vt
〉

the heat flow,

Q =
∫

mv2t
r

(
∂F

∂t

)
cr

d�v the source term for energy production, �R is a friction term and p = nkT the

pressure.

A thermodynamic derivation gives for the total pressure: p = nkT =
∑
i

pi − e2(ne + zini)
24πε0λD

For the electrical conductance in a plasma follows from the momentum balance, if w e � wi:

η �J = �E −
�J × �B +∇pe

ene

In a plasma where only elastic e-a collisions are important the equilibrium energy distribution function is the
Druyvesteyn distribution:

N(E)dE = Cne

(
E

E0

)3/2
exp

[
−3me

m0

(
E

E0

)2]
dE

with E0 = eEλv = eE/nσ.

11.8 Collision-radiative models

These models are first-moment equations for excited states. One assumes the Quasi-steady-state solution is
valid, where ∀p>1[(∂np/∂t = 0) ∧ (∇ · (np �wp) = 0)]. This results in:(

∂np>1
∂t

)
cr

= 0 ,
∂n1
∂t

+∇ · (n1 �w1) =
(
∂n1
∂t

)
cr

,
∂ni
∂t

+∇ · (ni �wi) =
(
∂ni
∂t

)
cr

with solutions np = r0pn
S
p+r1pn

B
p = bpn

S
p . Further holds for all collision-dominated levels that δbp := bp−1 =

b0p
−x
eff with peff =

√
Ry/Epi and 5 ≤ x ≤ 6. For systems in ESP, where only collisional (de)excitation

between levels p and p ± 1 is taken into account holds x = 6. Even in plasma’s far from equilibrium the
excited levels will eventually reach ESP, so from a certain level up the level densities can be calculated.

To find the population densities of the lower levels in the stationary case one has to start with a macroscopic
equilibrium:

Number of populating processes of level p = Number of depopulating processes of level p ,

When this is expanded it becomes:

ne
∑
q<p

nqKqp

︸ ︷︷ ︸
coll. excit.

+ne
∑
q>p

nqKqp

︸ ︷︷ ︸
coll. deexcit.

+
∑
q>p

nqAqp

︸ ︷︷ ︸
rad. deex. to

+ n2eniK+p︸ ︷︷ ︸
coll. recomb.

+ neniαrad︸ ︷︷ ︸
rad. recomb

=

nenp
∑
q<p

Kpq

︸ ︷︷ ︸
coll. deexcit.

+nenp
∑
q>p

Kpq

︸ ︷︷ ︸
coll. excit.

+ np
∑
q<p

Apq

︸ ︷︷ ︸
rad. deex. from

+nenpKp+︸ ︷︷ ︸
coll. ion.

11.9 Waves in plasma’s

Interaction of electromagnetic waves in plasma’s results in scattering and absorption of energy. For electro-
magnetic waves with complex wave number k = ω(n+ iκ)/c in one dimension one finds:
Ex = E0e−κωx/c cos[ω(t− nx/c)]. The refractive index n is given by:

n = c
k

ω
=

c

vf
=

√
1− ω2p

ω2
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For disturbances in the z-direction in a cold, homogeneous, magnetized plasma: �B = B0�ez +
�̂
Bei(kz−ωt) and

n = n0 + n̂ei(kz−ωt) (external E fields are screened) follows, with the definitions α = ωp/ω and β = Ω/ω
and ω2p = ω2pi + ω2pe:

�J = ��σ �E ,with ��σ = iε0ω
∑
s

α2s




1
1− β2s

−iβs
1− β2s

0

iβs
1− β2s

1
1− β2s

0

0 0 1




where the sum is taken over particle species s. The dielectric tensor E , with property:

�k · (��E · �E) = 0

is given by ��E = ��I − ��σ/iε0ω.

With the definitions S = 1−
∑
s

α2s
1− β2s

, D =
∑
s

α2sβs
1− β2s

, P = 1−
∑
s

α2s

follows:

��E =

 S −iD 0

iD S 0
0 0 P




The eigenvalues of this hermitian matrix are R = S + D, L = S − D, λ3 = P , with eigenvectors �er =
1
2

√
2(1, i, 0), �el = 1

2

√
2(1,−i, 0) and �e3 = (0, 0, 1). �er is connected with a right rotating field for which

iEx/Ey = 1 and �el is connected with a left rotating field for which iEx/Ey = −1. When k makes an angle θ

with �B one finds:

tan2(θ) =
P (n2 −R)(n2 − L)

S(n2 −RL/S)(n2 − P )

where n is the refractive index. From this the following solutions can be obtained:

A. θ = 0: transmission in the z-direction.

1. P = 0: Ex = Ey = 0. This describes a longitudinal linear polarized wave.

2. n2 = L: a left, circular polarized wave.

3. n2 = R: a right, circular polarized wave.

B. θ = π/2: transmission ⊥ the B-field.

1. n2 = P : the ordinary mode: Ex = Ey = 0. This is a transversal linear polarized wave.

2. n2 = RL/S: the extraordinary mode: iEx/Ey = −D/S, an elliptical polarized wave.

Resonance frequenciesare frequencies for which n2 → ∞, so vf = 0. For these holds: tan(θ) = −P/S.
For R → ∞ this gives the electron cyclotron resonance frequency ω = Ω e, for L → ∞ the ion cyclotron
resonance frequency ω = Ωi and for S = 0 holds for the extraordinary mode:

α2
(
1− mi

me

Ω2i
ω2

)
=
(
1− m2i

m2e

Ω2i
ω2

)(
1− Ω2i

ω2

)

Cut-off frequenciesare frequencies for which n2 = 0, so vf →∞. For these holds: P = 0 or R = 0 or L = 0.

In the case that β2 � 1 one finds Alfvén waves propagating parallel to the field lines. With the Alfvén velocity

vA =
ΩeΩi

ω2pe + ω2pi
c2

follows: n =
√
1 + c/vA, and in case vA � c: ω = kvA.
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Solid state physics

12.1 Crystal structure

A lattice is defined by the 3 translation vectors �ai, so that the atomic composition looks the same from each
point �r and �r′ = �r + �T , where �T is a translation vector given by: �T = u1�a1 + u2�a2 + u3�a3 with ui ∈ IN . A
lattice can be constructed from primitive cells. As a primitive cell one can take a parallellepiped, with volume

Vcell = |�a1 · (�a2 × �a3)|
Because a lattice has a periodical structure the physical properties which are connected with the lattice have
the same periodicity (neglecting boundary effects):

ne(�r + �T ) = ne(�r )

This periodicity is suitable to use Fourier analysis: n(�r ) is expanded as:

n(�r ) =
∑
G

nG exp(i �G · �r )

with

nG =
1

Vcell

∫∫
cell

∫
n(�r ) exp(−i �G · �r )dV

�G is the reciprocal lattice vector. If �G is written as �G = v1�b1 + v2�b2 + v3�b3 with vi ∈ IN , it follows for the
vectors�bi, cyclically:

�bi = 2π
�ai+1 × �ai+2

�ai · (�ai+1 × �ai+2)

The set of �G-vectors determines the Röntgen diffractions: a maximum in the reflected radiation occurs if:
∆�k = �G with ∆�k = �k − �k′. So: 2�k · �G = G2. From this follows for parallel lattice planes (Bragg reflection)
that for the maxima holds: 2d sin(θ) = nλ.

The Brillouin zone is defined as a Wigner-Seitz cell in the reciprocal lattice.

12.2 Crystal binding

A distinction can be made between 4 binding types:

1. Van der Waals bond

2. Ion bond

3. Covalent or homopolar bond

4. Metalic bond.

For the ion binding of NaCl the energy per molecule is calculated by:
E = cohesive energy(NaCl) – ionization energy(Na) + electron affinity(Cl)

The interaction in a covalent bond depends on the relative spin orientations of the electrons constituing the
bond. The potential energy for two parallel spins is higher than the potential energy for two antiparallel spins.
Furthermore the potential energy for two parallel spins has sometimes no minimum. In that case binding is not
possible.
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12.3 Crystal vibrations

12.3.1 A lattice with one type of atoms

In this model for crystal vibrations only nearest-neighbour interactions are taken into account. The force on
atom s with mass M can then be written as:

Fs =M
d2us
dt2

= C(us+1 − us) + C(us−1 − us)

Assuming that all solutions have the same time-dependence exp(−iωt) this results in:

−Mω2us = C(us+1 + us−1 − 2us)

Further it is postulated that: us±1 = u exp(isKa) exp(±iKa).

This gives: us = exp(iKsa). Substituting the later two equations in the fist results in a system of linear
equations, which has only a solution if their determinant is 0. This gives:

ω2 =
4C
M

sin2( 1
2
Ka)

Only vibrations with a wavelength within the first Brillouin Zone have a physical significance. This requires
that −π < Ka ≤ π.

The group velocity of these vibrations is given by:

vg =
dω

dK
=

√
Ca2

M
cos( 1

2
Ka) .

and is 0 on the edge of a Brillouin Zone. Here, there is a standing wave.

12.3.2 A lattice with two types of atoms

Now the solutions are:

ω2 = C

(
1
M1

+
1
M2

)
± C

√(
1
M1

+
1
M2

)2
− 4 sin2(Ka)

M1M2

Connected with each value of K are two values of ω, as can be
seen in the graph. The upper line describes the optical branch,
the lower line the acoustical branch. In the optical branch,
both types of ions oscillate in opposite phases, in the acoustical
branch they oscillate in the same phase. This results in a much
larger induced dipole moment for optical oscillations, and also a
stronger emission and absorption of radiation. Furthermore each
branch has 3 polarization directions, one longitudinal and two
transversal.

✲

✻

0
K

ω

π/a

√
2C
M2√
2C
M1

12.3.3 Phonons

The quantum mechanical excitation of a crystal vibration with an energy h̄ω is called a phonon. Phonons
can be viewed as quasi-particles: with collisions, they behave as particles with momentum h̄K . Their total
momentum is 0. When they collide, their momentum need not be conserved: for a normal process holds:
K1 + K2 = K3, for an umklapp process holds: K1 + K2 = K3 + G. Because phonons have no spin they
behave like bosons.
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12.3.4 Thermal heat capacity

The total energy of the crystal vibrations can be calculated by multiplying each mode with its energy and sum
over all branches K and polarizations P :

U =
∑
K

∑
P

h̄ω 〈nk,p〉 =
∑
λ

∫
Dλ(ω)

h̄ω

exp(h̄ω/kT )− 1dω

for a given polarization λ. The thermal heat capacity is then:

Clattice =
∂U

∂T
= k
∑
λ

∫
D(ω)

(h̄ω/kT )2 exp(h̄ω/kT )
(exp(h̄ω/kT )− 1)2 dω

The dispersion relation in one dimension is given by:

D(ω)dω =
L

π

dK

dω
dω =

L

π

dω

vg

In three dimensions one applies periodic boundary conditions to a cube with N 3 primitive cells and a volume
L3: exp(i(Kxx+Kyy +Kzz)) ≡ exp(i(Kx(x+ L) +Ky(y + L) +Kz(z + L))).

Because exp(2πi) = 1 this is only possible if:

Kx,Ky,Kz = 0; ± 2π
L
; ± 4π

L
; ± 6π

L
; ...± 2Nπ

L

So there is only one allowed value of �K per volume (2π/L)3 in K-space, or:(
L

2π

)3
=

V

8π3

allowed �K-values per unit volume in �K-space, for each polarization and each branch. The total number of
states with a wave vector < K is:

N =
(

L

2π

)3 4πK3
3

for each polarization. The density of states for each polarization is, according to the Einstein model:

D(ω) =
dN

dω
=
(
V K2

2π2

)
dK

dω
=

V

8π3

∫∫
dAω

vg

The Debye modelfor thermal heat capacities is a low-temperature approximation which is valid up to ≈ 50K.
Here, only the acoustic phonons are taken into account (3 polarizations), and one assumes that v = ωK ,
independent of the polarization. From this follows: D(ω) = V ω 2/2π2v3, where v is the speed of sound. This
gives:

U = 3
∫

D(ω) 〈n〉 h̄ωdω =
ωD∫
0

V ω2

2π2v3
h̄ω

exp(h̄ω/kT )− 1dω =
3V k2T 4

2π2v3h̄3

xD∫
0

x3dx

ex − 1 .

Here, xD = h̄ωD/kT = θD/T . θD is the Debye temperatureand is defined by:

θD =
h̄v

k

(
6π2N
V

)1/3
where N is the number of primitive cells. Because xD →∞ for T → 0 it follows from this:

U = 9NkT

(
T

θD

)3 ∞∫
0

x3dx

ex − 1 =
3π4NkT 4

5θD
∼ T 4 and CV =

12π4NkT 3

5θ3D
∼ T 3

In the Einstein model for the thermal heat capacity one considers only phonons at one frequency, an approxi-
mation for optical phonons.
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12.4 Magnetic field in the solid state

The following graph shows the magnetization versus fieldstrength for different types of magnetism:

diamagnetism

ferro

paramagnetism
χm =

∂M

∂H

M
Msat

0 H✲

✻

❤❤❤❤❤❤❤❤❤❤❤❤

12.4.1 Dielectrics

The quantum mechanical origin of diamagnetism is the Larmorprecession of the spin of the electron. Starting
with a circular electron orbit in an atom with two electrons, there is a Coulomb force F c and a magnetic force
on each electron. If the magnetic part of the force is not strong enough to significantly deform the orbit holds:

ω2 =
Fc(r)
mr

± eB

m
ω = ω20 ±

eB

m
(ω0 + δ)⇒ ω =

√(
ω0 ± eB

2m

)2
+ · · · ≈ ω0 ± eB

2m
= ω0 ± ωL

Here, ωL is the Larmor frequency. One electron is accelerated, the other decelerated. Hence there is a net
circular current which results in a magnetic moment �µ. The circular current is given by I = −Zeω L/2π, and
〈µ〉 = IA = Iπ

〈
ρ2
〉
= 2
3Iπ
〈
r2
〉
. If N is the number of atoms in the crystal it follows for the susceptibility,

with �M = �µN :

χ =
µ0M

B
= −µ0NZe2

6m
〈
r2
〉

12.4.2 Paramagnetism

Starting with the splitting of energy levels in a weak magnetic field: ∆Um − �µ · �B = mJgµBB, and with a
distribution fm ∼ exp(−∆Um/kT ), one finds for the average magnetic moment 〈µ〉 = ∑ fmµ/

∑
fm. After

linearization and because
∑

mJ = 0,
∑

J = 2J + 1 and
∑

m2J =
2
3J(J + 1)(J +

1
2 ) it follows that:

χp =
µ0M

B
=

µ0N 〈µ〉
B

=
µ0J(J + 1)g2µ2BN

3kT

This is the Curie law, χp ∼ 1/T .

12.4.3 Ferromagnetism

A ferromagnet behaves like a paramagnet above a critical temperature T c. To describe ferromagnetism a field
BE parallel with M is postulated: �BE = λµ0 �M . From there the treatment is analogous to the paramagnetic
case:

µ0M = χp(Ba +BE) = χp(Ba + λµ0M) = µ0

(
1− λ

C

T

)
M

From this follows for a ferromagnet: χF =
µ0M

Ba
=

C

T − Tc
which is Weiss-Curie’s law.

If BE is estimated this way it results in values of about 1000 T. This is clearly unrealistic and suggests another
mechanism. A quantum mechanical approach from Heisenberg postulates an interaction between two neigh-
bouring atoms: U = −2J �Si · �Sj ≡ −�µ · �BE . J is an overlap integral given by: J = 3kTc/2zS(S + 1), with
z the number of neighbours. A distinction between 2 cases can now be made:

1. J > 0: Si and Sj become parallel: the material is a ferromagnet.
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2. J < 0: Si and Sj become antiparallel: the material is an antiferromagnet.

Heisenberg’s theory predicts quantized spin waves: magnons. Starting from a model with only nearest neigh-
bouring atoms interacting one can write:

U = −2J �Sp · (�Sp−1 + �Sp+1) ≈ �µp · �Bp with �Bp =
−2J
gµB

(�Sp−1 + �Sp+1)

The equation of motion for the magnons becomes:
d�S

dt
=
2J
h̄

�Sp × (�Sp−1 + �Sp+1)

From here the treatment is analogous to phonons: postulate traveling waves of the type �Sp = �u exp(i(pka−
ωt)). This results in a system of linear equations with solution:

h̄ω = 4JS(1− cos(ka))

12.5 Free electron Fermi gas

12.5.1 Thermal heat capacity

The solution with period L of the one-dimensional Schrödinger equation is: ψ n(x) = A sin(2πx/λn) with
nλn = 2L. From this follows

E =
h̄2

2m

(nπ
L

)2
In a linear lattice the only important quantum numbers are n and m s. The Fermi levelis the uppermost filled
level in the ground state, which has the Fermi-energyEF. If nF is the quantum number of the Fermi level, it
can be expressed as: 2nF = N so EF = h̄2π2N2/8mL. In 3 dimensions holds:

kF =
(
3π2N
V

)1/3
and EF =

h̄2

2m

(
3π2N
V

)2/3

The number of states with energy≤ E is then: N =
V

3π2

(
2mE

h̄2

)3/2
.

and the density of states becomes: D(E) =
dN

dE
=

V

2π2

(
2m
h̄2

)3/2√
E =

3N
2E

.

The heat capacity of the electrons is approximately 0.01 times the classical expected value 3
2Nk. This is caused

by the Pauli exclusion principle and the Fermi-Dirac distribution: only electrons within an energy range∼ kT
of the Fermi level are excited thermally. There is a fraction ≈ T/TF excited thermally. The internal energy
then becomes:

U ≈ NkT
T

TF
and C =

∂U

∂T
≈ Nk

T

TF

A more accurate analysis gives: Celectrons = 1
2π
2NkT/TF ∼ T . Together with the T 3 dependence of the

thermal heat capacity of the phonons the total thermal heat capacity of metals is described by: C = γT +AT 3.

12.5.2 Electric conductance

The equation of motion for the charge carriers is: �F = md�v/dt = h̄d�k/dt. The variation of �k is given by
δ�k = �k(t) − �k(0) = −e �Et/h̄. If τ is the characteristic collision time of the electrons, δ�k remains stable if
t = τ . Then holds: 〈�v 〉 = µ �E, with µ = eτ/m the mobilityof the electrons.

The current in a conductor is given by: �J = nq�v = σ �E = �E/ρ = neµ�E. Because for the collision time holds:
1/τ = 1/τL + 1/τi, where τL is the collision time with the lattice phonons and τi the collision time with the
impurities follows for the resistivity ρ = ρL + ρi, with lim

T→0
ρL = 0.
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12.5.3 The Hall-effect

If a magnetic field is applied ⊥ to the direction of the current the charge carriers will be pushed aside by the
Lorentz force. This results in a magnetic field⊥ to the flow direction of the current. If �J = J�ex and �B = B�ez
than Ey/Ex = µB. The Hall coefficient is defined by: RH = Ey/JxB, and RH = −1/ne if Jx = neµEx.
The Hall voltage is given by: VH = Bvb = IB/neh where b is the width of the material and h de height.

12.5.4 Thermal heat conductivity

With 5 = vF τ the mean free path of the electrons follows from κ = 1
3C 〈v〉 5: κelectrons = π2nk2Tτ/3m.

From this follows for the Wiedemann-Franz ratio: κ/σ = 1
3 (πk/e)

2T .

12.6 Energy bands

In the tight-bondapproximation it is assumed that ψ = e iknaφ(x − na). From this follows for the energy:
〈E〉 = 〈ψ|H |ψ〉 = Eat − α − 2β cos(ka). So this gives a cosine superimposed on the atomic energy, which
can often be approximated by a harmonic oscillator. If it is assumed that the electron is nearly free one can
postulate: ψ = exp(i�k · �r ). This is a traveling wave. This wave can be decomposed into two standing waves:

ψ(+) = exp(iπx/a) + exp(−iπx/a) = 2 cos(πx/a)
ψ(−) = exp(iπx/a)− exp(−iπx/a) = 2i sin(πx/a)

The probability density |ψ(+)|2 is high near the atoms of the lattice and low in between. The probability
density |ψ(−)|2 is low near the atoms of the lattice and high in between. Hence the energy of ψ(+) is also
lower than the energy of ψ)(−). Suppose that U(x) = U cos(2πx/a), than the bandgap is given by:

Egap =

1∫
0

U(x)
[|ψ(+)|2 − |ψ(−)|2] dx = U

12.7 Semiconductors

The band structures and the transitions between them of direct and indirect semiconductors are shown in
the figures below. Here it is assumed that the momentum of the absorbed photon can be neglected. For an
indirect semiconductor a transition from the valence- to the conduction band is also possible if the energy of
the absorbed photon is smaller than the band gap: then, also a phonon is absorbed.

Direct transition

✻

✻

✞
✝

✞
✝�

✆

�
✆

E conduction
band

ωg

◦

•

Indirect transition

✻

✻

✞
✝

✞
✝�

✆

E

◦

•✛
ωΩ

This difference can also be observed in the absorption spectra:



68 Physics Formulary by ir. J.C.A. Wevers

Direct semiconductor

✻

✲

absorption

E
h̄ωg

Indirect semiconductor

✻

✲

absorption

E
Eg + h̄Ω

✡
✡
✡

...
...
...
.

...........

So indirect semiconductors, like Si and Ge, cannot emit any light and are therefore not usable to fabricate
lasers. When light is absorbed holds: �kh = −�ke, Eh(�kh) = −Ee(�ke), �vh = �ve and mh = −m∗

e if the
conduction band and the valence band have the same structure.

Instead of the normal electron mass one has to use the effective masswithin a lattice. It is defined by:

m∗ =
F

a
=

dp/dt

dvg/dt
= h̄

dK

dvg
= h̄2

(
d2E

dk2

)−1

with E = h̄ω and vg = dω/dk and p = h̄k.

With the distribution function fe(E) ≈ exp((µ − E)/kT ) for the electrons and fh(E) = 1 − fe(E) for the
holes the density of states is given by:

D(E) =
1
2π2

(
2m∗

h̄2

)3/2√
E − Ec

with Ec the energy at the edge of the conductance band. From this follows for the concentrations of the holes
p and the electrons n:

n =

∞∫
Ec

De(E)fe(E)dE = 2
(
m∗kT
2πh̄2

)3/2
exp
(
µ− Ec

kT

)

For the product np follows: np = 4
(

kT

2πh̄2

)3√
m∗
emh exp

(
−Eg
kT

)
For an intrinsic (no impurities) semiconductor holds: n i = pi, for a n− type holds: n > p and in a p− type
holds: n < p.

An exciton is a bound electron-hole pair, rotating on each other as in positronium. The excitation energy of an
exciton is smaller than the bandgap because the energy of an exciton is lower than the energy of a free electron
and a free hole. This causes a peak in the absorption just under E g.

12.8 Superconductivity

12.8.1 Description

A superconductor is characterized by a zero resistivity if certain quantities are smaller than some critical values:
T < Tc, I < Ic and H < Hc. The BCS-modelpredicts for the transition temperature T c:

Tc = 1.14ΘD exp
( −1
UD(EF)

)
while experiments find for Hc approximately:

Hc(T ) ≈ Hc(Tc)
(
1− T 2

T 2c

)
.



Chapter 12: Solid state physics 69

Within a superconductor the magnetic field is 0: the Meissner effect.

There are type I and type II superconductors. Because the Meissner effect implies that a superconductor is a
perfect diamagnet holds in the superconducting state: �H = µ0 �M . This holds for a type I superconductor, for
a type II superconductor this only holds to a certain value H c1, for higher values of H the superconductor is in
a vortex stateto a value Hc2, which can be 100 times Hc1. If H becomes larger than Hc2 the superconductor
becomes a normal conductor. This is shown in the figures below.

Type I

✻

✲

µ0M

H
Hc

�
�

�
�

�
�

�
�

Type II

✻

✲

µ0M

H
Hc1 Hc2

�
�

�
��
···············

The transition to a superconducting state is a second order thermodynamic state transition. This means that
there is a twist in the T − S diagram and a discontinuity in the CX − T diagram.

12.8.2 The Josephson effect

For the Josephson effect one considers two superconductors, separated by an insulator. The electron wave-
function in one superconductor is ψ1, in the other ψ2. The Schrödinger equations in both superconductors is
set equal:

ih̄
∂ψ1
∂t

= h̄Tψ2 , ih̄
∂ψ2
∂t

= h̄Tψ1

h̄T is the effect of the coupling of the electrons, or the transfer interaction through the insulator. The electron
wavefunctions are written as ψ1 =

√
n1 exp(iθ1) and ψ2 =

√
n2 exp(iθ2). Because a Cooper pair exist of two

electrons holds: ψ ∼ √
n. From this follows, if n1 ≈ n2:

∂θ1
∂t

=
∂θ2
∂t

and
∂n2
∂t

= −∂n1
∂t

The Josephson effect results in a current density through the insulator depending on the phase difference as:
J = J0 sin(θ2 − θ1) = J0 sin(δ), where J0 ∼ T . With an AC-voltage across the junction the Schrödinger
equations become:

ih̄
∂ψ1
∂t

= h̄Tψ2 − eV ψ1 and ih̄
∂ψ2
∂t

= h̄Tψ1 + eV ψ2

This gives: J = J0 sin
(
θ2 − θ1 − 2eV t

h̄

)
.

Hence there is an oscillation with ω = 2eV/h̄.

12.8.3 Flux quantisation in a superconducting ring

For the current density in general holds: �J = qψ∗�vψ =
nq

m
[h̄�∇θ − q �A ]

From the Meissner effect, �B = 0 and �J = 0, follows: h̄�∇θ = q �A ⇒ ∮ �∇θdl = θ2 − θ1 = 2πs with s ∈ IN .
Because:

∮
�Adl =

∫∫
(rot �A, �n )dσ =

∫∫
( �B, �n )dσ = Ψ follows: Ψ = 2πh̄s/q. The size of a flux quantum

follows by setting s = 1: Ψ = 2πh̄/e = 2.0678 · 10−15 Tm2.
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12.8.4 Macroscopic quantum interference

From θ2 − θ1 = 2eΨ/h̄ follows for two parallel junctions: δb − δa =
2eΨ
h̄

, so

J = Ja + Jb = 2J0 sin
(
δ0 cos

(
eΨ
h̄

))
This gives maxima if eΨ/h̄ = sπ.

12.8.5 The London equation

A current density in a superconductor proportional to the vector potential �A is postulated:

�J =
− �A

µ0λ2L
or rot �J =

− �B

µ0λ2L

where λL =
√

ε0mc2/nq2. From this follows: ∇2 �B = �B/λ2L.

The Meissner effect is the solution of this equation: �B(x) = B0 exp(−x/λL). Magnetic fields within a
superconductor drop exponentially.

12.8.6 The BCS model

The BCS model can explain superconductivity in metals. (So far there is no explanation for high-T c supercon-
ductance).

A new ground state where the electrons behave like independent fermions is postulated. Because of the in-
teraction with the lattice these pseudo-particles exhibit a mutual attraction. This causes two electrons with
opposite spin to combine to a Cooper pair. It can be proved that this ground state is perfect diamagnetic.

The infinite conductivity is more difficult to explain because a ring with a persisting current is not a real
equilibrium: a state with zero current has a lower energy. Flux quantization prevents transitions between these
states. Flux quantization is related to the existence of a coherent many-particle wavefunction. A flux quantum
is the equivalent of about 104 electrons. So if the flux has to change with one flux quantum there has to occur
a transition of many electrons, which is very improbable, or the system must go through intermediary states
where the flux is not quantized so they have a higher energy. This is also very improbable.

Some useful mathematical relations are:

∞∫
0

xdx

eax + 1
=

π2

12a2
,

∞∫
−∞

x2dx

(ex + 1)2
=

π2

3
,

∞∫
0

x3dx

ex + 1
=

π4

15

And, when
∞∑
n=0

(−1)n = 1
2 follows:

∞∫
0

sin(px)dx =

∞∫
0

cos(px)dx =
1
p

.
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Theory of groups

13.1 Introduction

13.1.1 Definition of a group

G is a group for the operation • if:

1. ∀A,B∈G ⇒ A •B ∈ G: G is closed.

2. ∀A,B,C∈G ⇒ (A •B) • C = A • (B • C): G obeys the associative law.

3. ∃E∈G so that ∀A∈GA • E = E •A = A: G has a unit element.

4. ∀A∈G∃A−1∈G so that A •A−1 = E: Each element in G has an inverse.

If also holds:
5. ∀A,B∈G ⇒ A •B = B •A the group is called Abelianor commutative.

13.1.2 The Cayley table

Each element arises only once in each row and column of the Cayley- or multiplication table: because EA i =
A−1
k (AkAi) = Ai each Ai appears once. There are h positions in each row and column when there are h

elements in the group so each element appears only once.

13.1.3 Conjugated elements, subgroups and classes

B is conjugateto A if ∃X∈G such that B = XAX−1. Then A is also conjugate to B because B =
(X−1)A(X−1)−1.
If B and C are conjugate to A, B is also conjugate with C.

A subgroupis a subset of G which is also a group w.r.t. the same operation.

A conjugacy classis the maximum collection of conjugated elements. Each group can be split up in conjugacy
classes. Some theorems:

• All classes are completely disjoint.

• E is a class itself: for each other element in this class would hold: A = XEX−1 = E.

• E is the only class which is also a subgroup because all other classes have no unit element.

• In an Abelian group each element is a separate class.

The physical interpretation of classes: elements of a group are usually symmetry operations which map a
symmetrical object into itself. Elements of one class are then the same kind of operations. The opposite need
not to be true.
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13.1.4 Isomorfism and homomorfism; representations

Two groups are isomorphicif they have the same multiplication table. The mapping from group G 1 to G2, so
that the multiplication table remains the same is a homomorphic mapping. It need not be isomorphic.

A representationis a homomorphic mapping of a group to a group of square matrices with the usual matrix
multiplication as the combining operation. This is symbolized by Γ. The following holds:

Γ(E) = II , Γ(AB) = Γ(A)Γ(B) , Γ(A−1) = [Γ(A)]−1

For each group there are 3 possibilities for a representation:

1. A faithful representation: all matrices are different.

2. The representation A → det(Γ(A)).

3. The identical representation: A→ 1.

An equivalent representationis obtained by performing an unitary base transformation: Γ ′(A) = S−1Γ(A)S.

13.1.5 Reducible and irreducible representations

If the sameunitary transformation can bring all matrices of a representation Γ in the same block structure the
representation is called reducible:

Γ(A) =
(
Γ(1)(A) 0
0 Γ(2)(A)

)
This is written as: Γ = Γ(1) ⊕ Γ(2). If this is not possible the representation is called irreducible.

The number of irreducible representations equals the number of conjugacy classes.

13.2 The fundamental orthogonality theorem

13.2.1 Schur’s lemma

Lemma: Each matrix which commutes with all matrices of an irreducible representation is a constant ×II ,
where II is the unit matrix. The opposite is (of course) also true.

Lemma: If there exists a matrix M so that for two irreducible representations of group G, γ (1)(Ai) and
γ(2)(Ai), holds: Mγ(1)(Ai) = γ(2)(Ai)M , than the representations are equivalent, or M = 0.

13.2.2 The fundamental orthogonality theorem

For a set of unequivalent, irreducible, unitary representations holds that, if h is the number of elements in the
group and 5i is the dimension of the ith¯ representation:

∑
R∈G

Γ(i)∗µν (R)Γ
(j)
αβ(R) =

h

5i
δijδµαδνβ

13.2.3 Character

The characterof a representation is given by the trace of the matrix and is therefore invariant for base trans-

formations: χ(j)(R) = Tr(Γ(j)(R))

Also holds, with Nk the number of elements in a conjugacy class:
∑
k

χ(i)∗(Ck)χ(j)(Ck)Nk = hδij

Theorem:
n∑
i=1

52i = h
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13.3 The relation with quantum mechanics

13.3.1 Representations, energy levels and degeneracy

Consider a set of symmetry transformations �x ′ = R�x which leave the Hamiltonian H invariant. These trans-
formations are a group. An isomorfic operation on the wavefunction is given by: P Rψ(�x ) = ψ(R−1�x ). This
is considered an active rotation. These operators commute with H: PRH = HPR, and leave the volume
element unchanged: d(R�x ) = d�x.

PR is the symmetry group of the physical system. It causes degeneracy: if ψn is a solution of Hψn = Enψn

than also holds: H(PRψn) = En(PRψn). A degeneracy which is not the result of a symmetry is called an
accidental degeneracy.

Assume an 5n-fold degeneracy at En: then choose an orthonormal set ψ (n)ν , ν = 1, 2, . . . , 5n. The function

PRψ
(n)
ν is in the same subspace: PRψ

(n)
ν =

!n∑
κ=1

ψ(n)κ Γ(n)κν (R)

where Γ(n) is an irreducible, unitaryrepresentation of the symmetry group G of the system. Each n corre-
sponds with another energy level. One can purely mathematical derive irreducible representations of a sym-
metry group and label the energy levels with a quantum number this way. A fixed choice of Γ (n)(R) defines

the base functions ψ(n)ν . This way one can also label each separate base function with a quantum number.

Particle in a periodical potential: the symmetry operation is a cyclic group: note the operator describing one
translation over one unit as A. Then: G = {A,A2, A3, . . . , Ah = E}.
The group is Abelian so all irreducible representations are one-dimensional. For 0 ≤ p ≤ h− 1 follows:

Γ(p)(An) = e2πipn/h

If one defines: k = − 2πp
ah

(
mod

2π
a

)
, so: PAψp(x) = ψp(x − a) = e2πip/hψp(x), this gives Bloch’s

theorem: ψk(x) = uk(x)eikx , with uk(x± a) = uk(x).

13.3.2 Breaking of degeneracy by a perturbation

Suppose the unperturbed system has Hamiltonian H0 and symmetry group G0. The perturbed system has
H = H0 + V , and symmetry group G ⊂ G0. If Γ(n)(R) is an irreducible representation of G0, it is also a
representation of G but not all elements of Γ(n) in G0 are also in G. The representation then usually becomes
reducible: Γ(n) = Γ(n1) ⊕ Γ(n2) ⊕ . . .. The degeneracy is then (possibly partially) removed: see the figure
below.

SpectrumH0 SpectrumH

5n

5n3 = dim(Γ(n3))

5n2 = dim(Γ(n2))
5n1 = dim(Γ(n1))

Theorem: The set of 5n degenerated eigenfunctions ψ
(n)
ν with energy En is a basis for an 5n-dimensional

irreducible representation Γ(n) of the symmetry group.

13.3.3 The construction of a base function

Each function F in configuration space can be decomposed into symmetry types: F =
n∑

j=1

!j∑
κ=1

f (j)κ

The following operator extracts the symmetry types:(
5j
h

∑
R∈G

Γ(j)∗κκ (R)PR

)
F = f (j)κ
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This is expressed as: f (j)κ is the part of F that transforms according to the κ th
¯ row of Γ(j).

F can also be expressed in base functions ϕ: F =
∑
ajκ

cajκϕ
(aj)
κ . The functions f

(j)
κ are in general not

transformed into each other by elements of the group. However, this does happen if c jaκ = cja.

Theorem: Two wavefunctions transforming according to non-equivalent unitary representations or according
to different rows of an unitary irreducible representation are orthogonal:
〈ϕ(i)κ |ψ(j)λ 〉 ∼ δijδκλ, and 〈ϕ(i)κ |ψ(i)κ 〉 is independent of κ.

13.3.4 The direct product of representations

Consider a physical system existing of two subsystems. The subspace D (i) of the system transforms according
to Γ(i). Basefunctions are ϕ

(i)
κ (�xi), 1 ≤ κ ≤ 5i. Now form all 51 × 52 products ϕ

(1)
κ (�x1)ϕ

(2)
λ (�x2). These

define a space D(1) ⊗D(2).

These product functions transform as:

PR(ϕ(1)κ (�x1)ϕ
(2)
λ (�x2)) = (PRϕ

(1)
κ (�x1))(PRϕ

(2)
λ (�x2))

In general the space D(1) ⊗D(2) can be split up in a number of invariant subspaces:

Γ(1) ⊗ Γ(2) =
∑
i

niΓ(i)

A useful tool for this reduction is that for the characters hold:

χ(1)(R)χ(2)(R) =
∑
i

niχ
(i)(R)

13.3.5 Clebsch-Gordan coefficients

With the reduction of the direct-product matrix w.r.t. the basis ϕ (i)κ ϕ
(j)
λ one uses a new basis ϕ(aκ)µ . These base

functions lie in subspaces D(ak). The unitary base transformation is given by:

ϕ(ak)µ =
∑
κλ

ϕ(i)κ ϕ
(j)
λ (iκjλ|akµ)

and the inverse transformation by: ϕ(i)κ ϕ
(j)
λ =

∑
akµ

ϕ(aκ)µ (akµ|iκjλ)

In essence the Clebsch-Gordan coefficients are dot products: (iκjλ|akµ) := 〈ϕ (i)k ϕ
(j)
λ |ϕ(ak)µ 〉

13.3.6 Symmetric transformations of operators, irreducible tensor operators

Observables (operators) transform as follows under symmetry transformations: A ′ = PRAP−1
R . If a set of

operators A(j)κ with 0 ≤ κ ≤ 5j transform into each other under the transformations of G holds:

PRA
(j)
κ P−1

R =
∑
ν

A(j)ν Γ(j)νκ (R)

If Γ(j) is irreducible they are called irreducible tensor operatorsA(j) with components A(j)κ .

An operator can also be decomposed into symmetry types: A =
∑
jk

a
(j)
k , with:

a(j)κ =

(
5j
h

∑
R∈G

Γ(j)∗κκ (R)

)
(PRAP−1

R )
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Theorem: Matrix elements Hij of the operator H which is invariant under ∀A∈G , are 0 between states which
transform according to non-equivalent irreducible unitary representations or according to different rows of such
a representation. Further 〈ϕ(i)κ |H|ψ(i)κ 〉 is independent of κ. For H = 1 this becomes the previous theorem.

This is applied in quantum mechanics in perturbation theoryand variational calculus. Here one tries to diag-
onalize H. Solutions can be found within each category of functions ϕ (i)κ with common i and κ: H is already
diagonal in categories as a whole.
Perturbation calculus can be applied independent within each category. With variational calculus the try func-
tion can be chosen within a separate category because the exact eigenfunctions transform according to a row
of an irreducible representation.

13.3.7 The Wigner-Eckart theorem

Theorem: The matrix element 〈ϕ(i)λ |A(j)κ |ψ(k)µ 〉 can only be �= 0 if Γ(j) ⊗ Γ(k) = . . . ⊕ Γ(i) ⊕ . . .. If this is
the case holds (if Γ(i) appears only once, otherwise one has to sum over a):

〈ϕ(i)λ |A(j)κ |ψ(k)µ 〉 = (iλ|jκkµ)〈ϕ(i)‖A(j)‖ψ(k)〉

This theorem can be used to determine selection rules: the probability of a dipole transition is given by (�ε is
the direction of polarization of the radiation):

PD =
8π2e2f3|r12|2

3h̄ε0c3
with r12 = 〈l2m2|�ε · �r |l1m1〉

Further it can be used to determine intensity ratios: if there is only one value of a the ratio of the matrix
elements are the Clebsch-Gordan coefficients. For more a-values relations between the intensity ratios can be
stated. However, the intensity ratios are also dependent on the occupation of the atomic energy levels.

13.4 Continuous groups

Continuous groups have h = ∞. However, not all groups with h = ∞ are continuous, e.g. the translation
group of an spatially infinite periodic potential is not continuous but does have h =∞.

13.4.1 The 3-dimensional translation group

For the translation of wavefunctions over a distance a holds: Paψ(x) = ψ(x − a). Taylor expansion near x
gives:

ψ(x − a) = ψ(x)− a
dψ(x)
dx

+
1
2
a2

d2ψ(x)
dx2

−+ . . .

Because the momentum operator in quantum mechanics is given by: p x =
h̄

i

∂

∂x
, this can be written as:

ψ(x− a) = e−iapx/h̄ψ(x)

13.4.2 The 3-dimensional rotation group

This group is called SO(3) because a faithful representation can be constructed from orthogonal 3×3matrices
with a determinant of +1.

For an infinitesimal rotation around the x-axis holds:

Pδθxψ(x, y, z) ≈ ψ(x, y + zδθx, z − yδθx)

= ψ(x, y, z) +
(
zδθx

∂

∂y
− yδθx

∂

∂z

)
ψ(x, y, z)

=
(
1− iδθxLx

h̄

)
ψ(x, y, z)
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Because the angular momentum operator is given by: Lx =
h̄

i

(
z
∂

∂y
− y

∂

∂z

)
.

So in an arbitrary direction holds: Rotations: Pα,�n = exp(−iα(�n · �J )/h̄)
Translations: Pa,�n = exp(−ia(�n · �p )/h̄)

Jx, Jy and Jz are called the generatorsof the 3-dim. rotation group, px, py and pz are called the generators of
the 3-dim. translation group.

The commutation rules for the generators can be derived from the properties of the group for multiplications:
translations are interchangeable↔ pxpy − pypx = 0.
Rotations are not generally interchangeable: consider a rotation around axis �n in the xz-plane over an angle
α. Then holds: Pα,�n = P−θ,yPα,xPθ,y , so:

e−iα(�n· �J )/h̄ = eiθJy/h̄e−iαJx/h̄e−iθJy/h̄

If α and θ are very small and are expanded to second order, and the corresponding terms are put equal with
�n · �J = Jx cos θ + Jz sin θ, it follows from the αθ term: JxJy − JyJx = ih̄Jz .

13.4.3 Properties of continuous groups

The elements R(p1, ..., pn) depend continuously on parameters p1, ..., pn. For the translation group this are
e.g. anx, any and anz . It is demanded that the multiplication and inverse of an element R depend continuously
on the parameters of R.

The statement that each element arises only once in each row and column of the Cayley table holds also for
continuous groups. The notion conjugacy class for continuous groups is defined equally as for discrete groups.
The notion representation is fitted by demanding continuity: each matrix element depends continuously on
pi(R).

Summation over all group elements is for continuous groups replaced by an integration. If f(R) is a function
defined on G, e.g. Γαβ(R), holds:∫

G
f(R)dR :=

∫
p1

· · ·
∫
pn

f(R(p1, ..., pn))g(R(p1, ..., pn))dp1 · · · dpn

Here, g(R) is the density function.

Because of the properties of the Cayley table is demanded:
∫
f(R)dR =

∫
f(SR)dR. This fixes g(R) except

for a constant factor. Define new variables p ′ by: SR(pi) = R(p′i). If one writes: dV := dp1 · · · dpn holds:

g(S) = g(E)
dV

dV ′

Here,
dV

dV ′ is the Jacobian:
dV

dV ′ = det

(
∂pi
∂p′j

)
, and g(E) is constant.

For the translation group holds: g(�a) = constant = g(�0 ) because g(a�n )d�a′ = g(�0 )d�a and d�a′ = d�a.

This leads to the fundamental orthogonality theorem:∫
G
Γ(i)∗µν (R)Γ

(j)
αβ(R)dR =

1
5i
δijδµαδνβ

∫
G

dR

and for the characters hold: ∫
G

χ(i)∗(R)χ(j)(R)dR = δij

∫
G

dR

Compactgroups are groups with a finite group volume:
∫
G dR <∞.
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13.5 The group SO(3)

One can take 2 parameters for the direction of the rotational axis and one for the angle of rotation ϕ. The
parameter space is a collection points ϕ�n within a sphere with radius π. The diametrical points on this sphere
are equivalent because R�n,π = R�n,−π.

Another way to define parameters is by means of Eulers angles. If α, β and γ are the 3 Euler angles, defined
as:

1. The spherical angles of axis 3 w.r.t. xyz are θ, ϕ := β, α. Now a rotation around axis 3 remains possible.

2. The spherical angles of the z-axis w.r.t. 123 are θ, ϕ := β, π − γ.

then the rotation of a quantum mechanical system is described by:

ψ → e−iαJzh̄e−iβJy/h̄e−iγJz/h̄ψ. So PR = e−iε(�n· �J )/h̄.

All irreducible representations of SO(3) can be constructed from the behaviour of the spherical harmonics
Ylm(θ, ϕ) with −l ≤ m ≤ l and for a fixed l:

PRYlm(θ, ϕ) =
∑
m′

Ylm′(θ, ϕ)D(l)mm′(R)

D(l) is an irreducible representation of dimension 2l + 1. The character of D (l) is given by:

χ(l)(α) =
l∑

m=−l

eimα = 1 + 2
l∑

k=0

cos(kα) =
sin([l + 1

2 ]α)
sin(12α)

In the performed derivation α is the rotational angle around the z-axis. This expression is valid for all rotations
over an angle α because the classes of SO(3) are rotations around the same angle around an axis with an
arbitrary orientation.

Via the fundamental orthogonality theorem for characters one obtains the following expression for the density
function (which is normalized so that g(0) = 1):

g(α) =
sin2(12α)
(12α)

2

With this result one can see that the given representations of SO(3) are the only ones: the character of another
representation χ′ would have to be ⊥ to the already found ones, so χ ′(α) sin2(12α) = 0∀α⇒ χ′(α) = 0∀α.
This is contradictory because the dimension of the representation is given by χ ′(0).

Because fermions have an half-odd integer spin the states ψsms with s = 1
2 and ms = ± 12 constitute a 2-dim.

space which is invariant under rotations. A problem arises for rotations over 2π:

ψ 1
2ms

→ e−2πiSz/h̄ψ 1
2ms

= e−2πimsψ 1
2ms

= −ψ 1
2ms

However, in SO(3) holds: Rz,2π = E. So here holds E → ±II . Because observable quantities can always be
written as 〈φ|ψ〉 or 〈φ|A|ψ〉, and are bilinear in the states, they do not change sign if the states do. If only one
state changes sign the observable quantities do change.

The existence of these half-odd integer representations is connected with the topological properties of SO(3):
the group is two-fold coherent through the identification R 0 = R2π = E.

13.6 Applications to quantum mechanics

13.6.1 Vectormodel for the addition of angular momentum

If two subsystems have angular momentum quantum numbers j 1 and j2 the only possible values for the total
angular momentum are J = j1+j2, j1+j2−1, ..., |j1−j2|. This can be derived from group theory as follows:
from χ(j1)(α)χ(j2)(α) =

∑
J

njχ
(J)(α) follows:

D(j1) ⊗D(j2) = D(j1+j2) ⊕D(j1+j2−1) ⊕ ...⊕D(|j1−j2|)
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The states can be characterized by quantum numbers in two ways: with j 1,m1, j2,m2 and with j1, j2, J,M .
The Clebsch-Gordan coefficients, for SO(3) called the Wigner coefficients, can be chosen real, so:

ψj1j2JM =
∑

m1m2

ψj1m1j2m2(j1m1j2m2|JM)

ψj1m1j2m2 =
∑
JM

ψj1j2JM (j1m1j2m2|JM)

13.6.2 Irreducible tensor operators, matrixelements and selection rules

Some examples of the behaviour of operators under SO(3)

1. Suppose j = 0: this gives the identical representation with 5j = 1. This state is described by a

scalar operator. Because PRA
(0)
0 P−1

R = A
(0)
0 this operator is invariant, e.g. the Hamiltonian of a

free atom. Then holds: 〈J ′M ′|H|JM〉 ∼ δMM ′δJJ′ .

2. A vector operator: �A = (Ax, Ay , Az). The cartesian components of a vector operator transform equally
as the cartesian components of �r by definition. So for rotations around the z-axis holds:

D(Rα,z) =


 cosα − sinα 0
sinα cosα 0
0 0 1




The transformed operator has the same matrix elements w.r.t. PRψ and PRφ:〈
PRψ|PRAxP

−1
R |PRφ

〉
= 〈ψ|Ax|φ〉, and χ(Rα,z) = 1 + 2 cos(α). According to the equation for

characters this means one can choose base operators which transform like Y 1m(θ, ϕ). These turn out to
be the spherical components:

A
(1)
+1 = − 1√

2
(Ax + iAy), A

(1)
0 = Az , A

(1)
−1 =

1√
2
(Ax − iAy)

3. A cartesian tensor of rank 2: Tij is a quantity which transforms under rotations like U iVj , where �U and
�V are vectors. So Tij transforms like PRTijP

−1
R =

∑
kl

TklDki(R)Dlj(R), so like D(1) ⊗ D(1) =

D(2) ⊕D(1) ⊕D(0). The 9 components can be split in 3 invariant subspaces with dimension 1 (D (0)),
3 (D(1)) and 5 (D(2)). The new base operators are:

I. Tr(T ) = Txx + Tyy + Tzz . This transforms as the scalar �U · �V , so as D(0).

II. The 3 antisymmetric components Az = 1
2 (Txy − Tyx), etc. These transform as the vector �U × �V ,

so as D(1).

III. The 5 independent components of the traceless, symmetric tensor S:
Sij = 1

2 (Tij + Tji)− 1
3δijTr(T ). These transform as D(2).

Selection rules for dipole transitions

Dipole operators transform as D(1): for an electric dipole transfer is the operator e�r, for a magnetic e( �L +
2�S )/2m.

From the Wigner-Eckart theorem follows: 〈J ′M ′|A(1)κ |JM〉 = 0 except D(J
′) is a part of D(1) ⊗ D(J) =

D(J+1) ⊕ D(J) ⊕ D(|J−1|). This means that J ′ ∈ {J + 1, J, |J − 1|}: J ′ = J or J ′ = J ± 1, except
J ′ = J = 0.

Landé-equation for the anomalous Zeeman splitting

According to Landé’s model the interaction between a magnetic moment with an external magnetic field is
determined by the projection of �M on �J because �L and �S precede fast around �J . This can also be understood
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from the Wigner-Eckart theorem: from this follows that the matrix elements from all vector operators show a
certain proportionality. For an arbitrary operator �A follows:

〈αjm′| �A|αjm〉 = 〈αjm| �A · �J |αjm〉
j(j + 1)h̄2

〈αjm′| �J |αjm〉

13.7 Applications to particle physics

The physics of a system does not change after performing a transformation ψ ′ = eiδψ where δ is a constant.
This is a global gauge transformation: the phase of the wavefunction changes everywhere by the same amount.

There exists some freedom in the choice of the potentials �A and φ at the same �E and �B: gauge transformations
of the potentials do not change �E and �B (See chapter 2 and 10). The solution ψ ′ of the Schrödinger equation
with the transformed potentials is: ψ ′ = e−iqf(�r,t)ψ.

This is a local gauge transformation: the phase of the wavefunction changes different at each position. The
physics of the system does not change if �A and φ are also transformed. This is now stated as a guide principle:
the “right of existence” of the electromagnetic field is to allow local gauge invariance.

The gauge transformations of the EM-field form a group: U(1), unitary 1× 1-matrices. The split-off of charge
in the exponent is essential: it allows one gauge field for all charged particles, independent of their charge.

This concept is generalized: particles have a “special charge” Q. The group elements now are
PR = exp(−iQΘ).

Other force fields than the electromagnetic field can also be understood this way. The weak interaction together
with the electromagnetic interaction can be described by a force field that transforms according to U(1)⊗SU(2),
and consists of the photon and three intermediary vector bosons. The colour force is described by SU(3), and
has a gauge field that exists of 8 types of gluons.

In general the group elements are given by PR = exp(−i�T · �Θ), whereΘn are real constants and Tn operators
(generators), like Q. The commutation rules are given by [T i, Tj] = i

∑
k

cijkTk. The cijk are the structure

constantsof the group. For SO(3) these constants are c ijk = εijk , here εijk is the complete antisymmetric
tensor with ε123 = +1.

These constants can be found with the help of group product elements: because G is closed holds:
ei�Θ·�T ei�Θ

′·�T e−i�Θ·�T e−i�Θ′·�T = e−i�Θ′′·�T . Taylor expansion and setting equal ΘnΘ′m-terms results in the com-
mutation rules.

The group SU(2) has 3 free parameters: because it is unitary there are 4 real conditions over 4 complex
parameters, and the determinant has to be +1, remaining 3 free parameters.

Each unitary matrix U can be written as: U = e−iH . Here, H is a Hermitian matrix. Further it always holds
that: det(U) = e−iTr(H).
For each matrix of SU(2) holds that Tr(H)=0. Each Hermitian, traceless 2×2matrix can be written as a linear
combination of the 3 Pauli-matricesσi. So these matrices are a choice for the operators of SU(2). One can
write: SU(2)={exp(− 12 i�σ · �Θ)}.

In abstraction, one can consider an isomorphic group where only the commutation rules are considered to be
known regarding the operators T i: [T1, T2] = iT3, etc.

In elementary particle physics the Ti can be interpreted e.g. as the isospinoperators. Elementary particles can
be classified in isospin-multiplets, these are the irreducible representations of SU(2). The classification is:

1. The isospin-singlet≡ the identical representation: e−i�T ·�Θ = 1⇒ Ti = 0

2. The isospin-doublet≡ the faithful representation of SU(2) on 2× 2 matrices.



80 Physics Formulary by ir. J.C.A. Wevers

The group SU(3) has 8 free parameters. (The group SU(N ) has N 2 − 1 free parameters). The Hermitian,
traceless operators are 3 SU(2)-subgroups in the �e1�e2, �e1�e3 and the �e2�e3 plane. This gives 9 matrices, which
are not all 9 linear independent. By taking a linear combination one gets 8 matrices.

In the Lagrange density for the colour force one has to substitute
∂

∂x
→ D

Dx
:=

∂

∂x
−

8∑
i=1

TiA
i
x

The terms of 3rd and 4th power in A show that the colour field interacts with itself.



Chapter 14

Nuclear physics

14.1 Nuclear forces

The mass of a nucleus is given by:

Mnucl = Zmp +Nmn − Ebind/c
2

The binding energy per nucleon is given in
the figure at the right. The top is at 5626Fe,
the most stable nucleus. With the constants

a1 = 15.760 MeV
a2 = 17.810 MeV
a3 = 0.711 MeV
a4 = 23.702 MeV
a5 = 34.000 MeV
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and A = Z +N , in the dropletor collective modelof the nucleus the binding energy E bind is given by:

Ebind
c2

= a1A− a2A
2/3 − a3

Z(Z − 1)
A1/3

− a4
(N − Z)2

A
+ εa5A

−3/4

These terms arise from:

1. a1: Binding energy of the strong nuclear force, approximately∼ A.

2. a2: Surface correction: the nucleons near the surface are less bound.

3. a3: Coulomb repulsion between the protons.

4. a4: Asymmetry term: a surplus of protons or neutrons has a lower binding energy.

5. a5: Pair off effect: nuclei with an even number of protons or neutrons are more stable because groups of
two protons or neutrons have a lower energy. The following holds:

Z even, N even: ε = +1, Z odd, N odd: ε = −1.
Z even, N odd: ε = 0, Z odd, N even: ε = 0.

The Yukawa potential can be derived if the nuclear force can to first approximation, be considered as an
exchange of virtual pions:

U(r) = −W0r0
r

exp
(
− r

r0

)
With∆E ·∆t ≈ h̄, Eγ = m0c

2 and r0 = c∆t follows: r0 = h̄/m0c.

In the shell model of the nucleus one assumes that a nucleon moves in an average field of other nucleons.
Further, there is a contribution of the spin-orbit coupling ∼ �L · �S: ∆Vls = 1

2 (2l + 1)h̄ω. So each level
(n, l) is split in two, with j = l ± 1

2 , where the state with j = l + 1
2 has the lowest energy. This is just

the opposite for electrons, which is an indication that the L − S interaction is not electromagnetical. The
energy of a 3-dimensional harmonic oscillator is E = (N + 3

2 )h̄ω. N = nx + ny + nz = 2(n − 1) + l
where n ≥ 1 is the main oscillator number. Because −l ≤ m ≤ l and ms = ± 12 h̄ there are 2(2l + 1)
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substates which exist independently for protons and neutrons. This gives rise to the so called magical numbers:
nuclei where each state in the outermost level are filled are particulary stable. This is the case if N or Z
∈ {2, 8, 20, 28, 50, 82, 126}.

14.2 The shape of the nucleus

A nucleus is to first approximation spherical with a radius of R = R0A
1/3. Here, R0 ≈ 1.4 ·10−15 m, constant

for all nuclei. If the nuclear radius is measured including the charge distribution one obtains R 0 ≈ 1.2 · 10−15
m. The shape of oscillating nuclei can be described by spherical harmonics:

R = R0

[
1 +
∑
lm

almY m
l (θ, ϕ)

]

l = 0 gives rise to monopole vibrations, density vibrations, which can be applied to the theory of neutron stars.
l = 1 gives dipole vibrations, l = 2 quadrupole, with a2,0 = β cos γ and a2,±2 = 1

2

√
2β sin γ where β is the

deformation factor and γ the shape parameter. The multipole moment is given by µ l = ZerlY m
l (θ, ϕ). The

parity of the electric moment is ΠE = (−1)l, of the magnetic momentΠM = (−1)l+1.
There are 2 contributions to the magnetic moment: �ML =

e

2mp
�L and �MS = gS

e

2mp
�S.

where gS is the spin-gyromagnetic ratio. For protons holds gS = 5.5855 and for neutrons gS = −3.8263.
The z-components of the magnetic moment are given by ML,z = µNml and MS,z = gSµNmS . The resulting
magnetic moment is related to the nuclear spin I according to �M = gI(e/2mp)�I . The z-component is then
Mz = µNgImI .

14.3 Radioactive decay

The number of nuclei decaying is proportional to the number of nuclei: Ṅ = −λN . This gives for the number
of nuclei N : N(t) = N0 exp(−λt). The half life time follows from τ 1

2
λ = ln(2). The average life time

of a nucleus is τ = 1/λ. The probability that N nuclei decay within a time interval is given by a Poisson
distribution:

P (N)dt = N0
λNe−λ

N !
dt

If a nucleus can decay into more final states then holds: λ =
∑

λi. So the fraction decaying into state i is
λi/
∑

λi. There are 5 types of natural radioactive decay:

1. α-decay: the nucleus emits a He2+ nucleus. Because nucleons tend to order themselves in groups of
2p+2n this can be considered as a tunneling of a He2+ nucleus through a potential barrier. The tunnel
probability P is

P =
incoming amplitude
outgoing amplitude

= e−2G with G =
1
h̄

√
2m
∫
[V (r) − E]dr

G is called the Gamow factor.

2. β-decay. Here a proton changes into a neutron or vice versa:
p+ → n0 +W+ → n0 + e+ + νe, and n0 → p+ +W− → p+ + e− + νe.

3. Electron capture: here, a proton in the nucleus captures an electron (usually from the K-shell).

4. Spontaneous fission: a nucleus breaks apart.

5. γ-decay: here the nucleus emits a high-energetic photon. The decay constant is given by

λ =
P (l)
h̄ω

∼ Eγ

(h̄c)2

(
EγR

h̄c

)2l
∼ 10−4l
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where l is the quantum number for the angular momentum and P the radiated power. Usually the
decay constant of electric multipole moments is larger than the one of magnetic multipole moments.
The energy of the photon is Eγ = Ei − Ef − TR, with TR = E2γ/2mc2 the recoil energy, which
can usually be neglected. The parity of the emitted radiation is Π l = Πi · Πf . With I the quantum
number of angular momentum of the nucleus, L = h̄

√
I(I + 1), holds the following selection rule:

|�Ii − �If | ≤ ∆l ≤ |�Ii + �If |.

14.4 Scattering and nuclear reactions

14.4.1 Kinetic model

If a beam with intensity I hits a target with density n and length x (Rutherford scattering) the number of
scatterings R per unit of time is equal to R = Inxσ. From this follows that the intensity of the beam decreases
as −dI = Inσdx. This results in I = I0e−nσx = I0e−µx.

Because dR = R(θ, ϕ)dΩ/4π = Inxdσ it follows:
dσ

dΩ
=

R(θ, ϕ)
4πnxI

If N particles are scattered in a material with density n then holds:
∆N

N
= n

dσ

dΩ
∆Ω∆x

For Coulomb collisions holds:
dσ

dΩ

∣∣∣∣
C

=
Z1Z2e

2

8πε0µv20

1
sin4(12θ)

14.4.2 Quantum mechanical model for n-p scattering

The initial state is a beam of neutrons moving along the z-axis with wavefunction ψ init = eikz and current
density Jinit = v|ψinit|2 = v. At large distances from the scattering point they have approximately a spherical
wavefunction ψscat = f(θ)eikr/r where f(θ) is the scattering amplitude. The total wavefunction is then given
by

ψ = ψin + ψscat = eikz + f(θ)
eikr

r

The particle flux of the scattered particles is v|ψscat|2 = v|f(θ)|2dΩ. From this it follows that σ(θ) = |f(θ)|2.
The wavefunction of the incoming particles can be expressed as a sum of angular momentum wavefunctions:

ψinit = eikz =
∑
l

ψl

The impact parameter is related to the angular momentum with L = bp = bh̄k, so bk ≈ l. At very low energy
only particles with l = 0 are scattered, so

ψ = ψ′
0 +
∑
l>0

ψl and ψ0 =
sin(kr)

kr

If the potential is approximately rectangular holds: ψ ′
0 = C

sin(kr + δ0)
kr

The cross section is then σ(θ) =
sin2(δ0)

k2
so σ =

∫
σ(θ)dΩ =

4π sin2(δ0)
k2

At very low energies holds: sin2(δ0) =
h̄2k2/2m
W0 +W

with W0 the depth of the potential well. At higher energies holds: σ =
4π
k2

∑
l

sin2(δl)
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14.4.3 Conservation of energy and momentum in nuclear reactions

If a particle P1 collides with a particle P2 which is in rest w.r.t. the laboratory system and other particles are
created, so

P1 + P2 →
∑
k>2

Pk

the total energy Q gained or required is given by Q = (m 1 +m2 −
∑
k>2

mk)c2.

The minimal required kinetic energy T of P1 in the laboratory system to initialize the reaction is

T = −Q
m1 +m2 +

∑
mk

2m2

If Q < 0 there is a threshold energy.

14.5 Radiation dosimetry

Radiometric quantitiesdetermine the strength of the radiation source(s). Dosimetric quantitiesare related to
the energy transfer from radiation to matter. Parameters describing a relation between those are called inter-
action parameters. The intensity of a beam of particles in matter decreases according to I(s) = I 0 exp(−µs).
The deceleration of a heavyparticle is described by the Bethe-Bloch equation:

dE

ds
∼ q2

v2

The fluentionis given by Φ = dN/dA. The flux is given by φ = dΦ/dt. The energy loss is defined by Ψ =
dW/dA, and the energy flux density ψ = dΨ/dt. The absorption coefficientis given by µ = (dN/N)/dx.
The mass absorption coefficientis given by µ/3.

The radiation doseX is the amount of charge produced by the radiation per unit of mass, with unit C/kg. An
old unit is the Röntgen: 1Ro= 2.58 · 10−4 C/kg. With the energy-absorption coefficient µE follows:

X =
dQ

dm
=

eµE
W3

Ψ

where W is the energy required to disjoin an elementary charge.

The absorbed doseD is given by D = dEabs/dm, with unit Gy=J/kg. An old unit is the rad: 1 rad=0.01 Gy.
The dose tempois defined as Ḋ. It can be derived that

D =
µE
3
Ψ

The KermaK is the amount of kinetic energy of secundary produced particles which is produced per mass
unit of the radiated object.

The equivalent doseH is a weight average of the absorbed dose per type of radiation, where for each type
radiation the effects on biological material is used for the weight factor. These weight factors are called the
quality factors. Their unit is Sv. H = QD. If the absorption is not equally distributed also weight factors w
per organ need to be used: H =

∑
wkHk. For some types of radiation holds:

Radiation type Q

Röntgen, gamma radiation 1
β, electrons, mesons 1
Thermic neutrons 3 to 5
Fast neutrons 10 to 20
protons 10
α, fission products 20



Chapter 15

Quantum field theory & Particle physics

15.1 Creation and annihilation operators

A state with more particles can be described by a collection occupation numbers |n 1n2n3 · · ·〉. Hence the
vacuum state is given by |000 · · ·〉. This is a complete description because the particles are indistinguishable.
The states are orthonormal:

〈n1n2n3 · · · |n′
1n

′
2n

′
3 · · ·〉 =

∞∏
i=1

δnin′
i

The time-dependent state vector is given by

Ψ(t) =
∑

n1n2···
cn1n2···(t)|n1n2 · · ·〉

The coefficients c can be interpreted as follows: |cn1n2···|2 is the probability to find n1 particles with momen-
tum �k1, n2 particles with momentum �k2, etc., and 〈Ψ(t)|Ψ(t)〉 =∑ |cni(t)|2 = 1. The expansion of the states
in time is described by the Schrödinger equation

i
d

dt
|Ψ(t)〉 = H |Ψ(t)〉

where H = H0 + Hint. H0 is the Hamiltonian for free particles and keeps |cni(t)|2 constant, Hint is the
interaction Hamiltonian and can increase or decrease a c2 at the cost of others.

All operators which can change occupation numbers can be expanded in the a and a † operators. a is the
annihilation operatorand a† the creation operator, and:

a(�ki)|n1n2 · · ·ni · · ·〉 =
√
ni |n1n2 · · ·ni − 1 · · ·〉

a†(�ki)|n1n2 · · ·ni · · ·〉 =
√
ni + 1 |n1n2 · · ·ni + 1 · · ·〉

Because the states are normalized holds a|0〉 = 0 and a(�ki)a†(�ki)|ni〉 = ni|ni〉. So aa† is an occupation
number operator. The following commutation rules can be derived:

[a(�ki), a(�kj)] = 0 , [a†(�ki), a†(�kj)] = 0 , [a(�ki), a†(�kj)] = δij

Hence for free spin-0 particles holds: H0 =
∑
i

a†(�ki)a(�ki)h̄ωki

15.2 Classical and quantum fields

Starting with a real field Φα(x) (complex fields can be split in a real and an imaginary part), the Lagrange
densityL is a function of the position x = (�x, ict) through the fields: L = L(Φα(x), ∂νΦα(x)). The La-
grangian is given by L =

∫ L(x)d3x. Using the variational principle δI(Ω) = 0 and with the action-integral
I(Ω) =

∫ L(Φα, ∂νΦα)d4x the field equation can be derived:

∂L
∂Φα

− ∂

∂xν

∂L
∂(∂νΦα)

= 0

The conjugated fieldis, analogous to momentum in classical mechanics, defined as:

Πα(x) =
∂L
∂Φ̇α
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With this, the Hamilton density becomesH(x) = ΠαΦ̇α − L(x).
Quantization of a classical field is analogous to quantization in point mass mechanics: the field functions are
considered as operators obeying certain commutation rules:

[Φα(�x),Φβ(�x ′)] = 0 , [Πα(�x),Πβ(�x ′)] = 0 , [Φα(�x),Πβ(�x ′)] = iδαβ(�x− �x ′)

15.3 The interaction picture

Some equivalent formulations of quantum mechanics are possible:

1. Schrödinger picture: time-dependent states, time-independent operators.

2. Heisenberg picture: time-independent states, time-dependent operators.

3. Interaction picture: time-dependent states, time-dependent operators.

The interaction picture can be obtained from the Schrödinger picture by an unitary transformation:

|Φ(t)〉 = eiHS
0 |ΦS(t)〉 and O(t) = eiH

S
0 OSe−iHS

0

The index S denotes the Schrödinger picture. From this follows:

i
d

dt
|Φ(t)〉 = Hint(t)|Φ(t)〉 and i

d

dt
O(t) = [O(t), H0]

15.4 Real scalar field in the interaction picture

It is easy to find that, with M := m20c
2/h̄2, holds:

∂

∂t
Φ(x) = Π(x) and

∂

∂t
Π(x) = (∇2 −M2)Φ(x)

From this follows that Φ obeys the Klein-Gordon equation (✷ − M 2)Φ = 0. With the definition k20 =
�k2 +M2 := ω2k and the notation �k · �x− ik0t := kx the general solution of this equation is:

Φ(x) =
1√
V

∑
�k

1√
2ωk

(
a(�k )eikx + a†(�k )e−ikx

)
, Π(x) =

i√
V

∑
�k

√
1
2ωk

(
−a(�k )eikx + a†(�k )e−ikx

)

The field operators contain a volume V , which is used as normalization factor. Usually one can take the limit
V →∞.

In general it holds that the term with e−ikx, the positive frequency part, is the creation part, and the negative
frequency part is the annihilation part.

the coefficients have to be each others hermitian conjugate because Φ is hermitian. Because Φ has only one
component this can be interpreted as a field describing a particle with spin zero. From this follows that the
commutation rules are given by [Φ(x),Φ(x ′)] = i∆(x− x′) with

∆(y) =
1

(2π)3

∫
sin(ky)

ωk
d3k

∆(y) is an odd function which is invariant for proper Lorentz transformations (no mirroring). This is consistent
with the previously found result [Φ(�x, t,Φ(�x ′, t)] = 0. In general holds that∆(y) = 0 outside the light cone.
So the equations obey the locality postulate.

The Lagrange density is given by: L(Φ, ∂νΦ) = − 12 (∂νΦ∂νΦ+m2Φ2). The energy operator is given by:

H =
∫
H(x)d3x =

∑
�k

h̄ωka
†(�k )a(�k )
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15.5 Charged spin-0 particles, conservation of charge

The Lagrange density of charged spin-0 particles is given by: L = −(∂ νΦ∂νΦ∗ +M2ΦΦ∗).

Noether’s theorem connects a continuous symmetry of L and an additive conservation law. Suppose that
L ((Φα)′, ∂ν(Φα)′) = L (Φα, ∂νΦα) and there exists a continuous transformation between Φα and Φα′ such
as Φα′ = Φα + εfα(Φ). Then holds

∂

∂xν

(
∂L

∂(∂νΦα)
fα
)
= 0

This is a continuity equation⇒ conservation law. Which quantity is conserved depends on the symmetry. The
above Lagrange density is invariant for a change in phase Φ → Φe iθ: a global gauge transformation. The
conserved quantity is the current density Jµ(x) = −ie(Φ∂µΦ∗ − Φ∗∂µΦ). Because this quantity is 0 for real
fields a complex field is needed to describe charged particles. When this field is quantized the field operators
are given by

Φ(x) =
1√
V

∑
�k

1√
2ωk

(
a(�k )eikx + b†(�k )e−ikx

)
, Φ†(x) =

1√
V

∑
�k

1√
2ωk

(
a†(�k )eikx + b(�k )e−ikx

)

Hence the energy operator is given by:

H =
∑
�k

h̄ωk

(
a†(�k )a(�k ) + b†(�k )b(�k )

)

and the charge operator is given by:

Q(t) = −i

∫
J4(x)d3x⇒ Q =

∑
�k

e
(
a†(�k )a(�k )− b†(�k )b(�k )

)

From this follows that a†a := N+(�k ) is an occupation number operator for particles with a positive charge
and b†b := N−(�k ) is an occupation number operator for particles with a negative charge.

15.6 Field functions for spin-12 particles

Spin is defined by the behaviour of the solutions ψ of the Dirac equation. A scalar field Φ has the property
that, if it obeys the Klein-Gordon equation, the rotated field Φ̃(x) := Φ(Λ−1x) also obeys it. Λ denotes
4-dimensional rotations: the proper Lorentz transformations. These can be written as:

Φ̃(x) = Φ(x)e−i�n·�L with Lµν = −ih̄

(
xµ

∂

∂xν
− xν

∂

∂xµ

)

For µ ≤ 3, ν ≤ 3 these are rotations, for ν = 4, µ �= 4 these are Lorentz transformations.

A rotated field ψ̃ obeys the Dirac equation if the following condition holds: ψ̃(x) = D(Λ)ψ(Λ−1x). This

results in the condition D−1γλD = Λλµγµ. One finds: D = ei�n·�S with Sµν = −i 12 h̄γµγν . Hence:

ψ̃(x) = e−i(S+L)ψ(x) = e−iJψ(x)

Then the solutions of the Dirac equation are given by:

ψ(x) = ur±(�p )e
−i(�p·�x±Et)

Here, r is an indication for the direction of the spin, and ± is the sign of the energy. With the notation
vr(�p ) = ur−(−�p ) and ur(�p ) = ur+(�p ) one can write for the dot products of these spinors:

ur+(�p )u
r′
+(�p ) =

E

M
δrr′ , ur−(�p )u

r′
−(�p ) =

E

M
δrr′ , ur+(�p )u

r′
−(�p ) = 0
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Because of the factor E/M this is not relativistic invariant. A Lorentz-invariant dot product is defined by
ab := a†γ4b, where a := a†γ4 is a row spinor. From this follows:

ur(�p )ur
′
(�p ) = δrr′ , vr(�p )vr

′
(�p ) = −δrr′ , ur(�p )vr

′
(�p ) = 0

Combinations of the type aa give a 4× 4 matrix:

2∑
r=1

ur(�p )ur(�p ) =
−iγλpλ +M

2M
,

2∑
r=1

vr(�p )vr(�p ) =
−iγλpλ −M

2M

The Lagrange density which results in the Dirac equation and having the correct energy normalization is:

L(x) = −ψ(x)
(
γµ

∂

∂xµ
+M

)
ψ(x)

and the current density is Jµ(x) = −ieψγµψ.

15.7 Quantization of spin-12 fields

The general solution for the fieldoperators is in this case:

ψ(x) =

√
M

V

∑
�p

1√
E

∑
r

(
cr(�p )ur(�p )eipx + d†r(�p )v

r(�p )e−ipx
)

and

ψ(x) =

√
M

V

∑
�p

1√
E

∑
r

(
c†r(�p )ur(�p )e

−ipx + dr(�p )vr(�p )eipx
)

Here, c† and c are the creation respectively annihilation operators for an electron and d † and d the creation
respectively annihilation operators for a positron. The energy operator is given by

H =
∑
�p

E�p

2∑
r=1

(
c†r(�p )cr(�p )− dr(�p )d†r(�p )

)
To prevent that the energy of positrons is negative the operators must obey anti commutation rules in stead of
commutation rules:

[cr(�p ), c
†
r′(�p )]+ = [dr(�p ), d

†
r′(�p )]+ = δrr′δpp′ , all other anti commutators are 0.

The field operators obey

[ψα(x), ψβ(x′)] = 0 , [ψα(x), ψβ(x′)] = 0 , [ψα(x), ψβ(x′)]+ = −iSαβ(x − x′)

with S(x) =
(
γλ

∂

∂xλ
−M

)
∆(x)

The anti commutation rules give besides the positive-definite energy also the Pauli exclusion principle and the
Fermi-Dirac statistics: because c†r(�p )c†r(�p ) = −c†r(�p )c†r(�p ) holds: {c†r(p)}2 = 0. It appears to be impossible
to create two electrons with the same momentum and spin. This is the exclusion principle. Another way to see
this is the fact that {N+r (�p )}2 = N+r (�p ): the occupation operators have only eigenvalues 0 and 1.

To avoid infinite vacuum contributions to the energy and charge the normal productis introduced. The expres-
sion for the current density now becomes Jµ = −ieN(ψγµψ). This product is obtained by:

• Expand all fields into creation and annihilation operators,

• Keep all terms which have no annihilation operators, or in which they are on the right of the creation
operators,

• In all other terms interchange the factors so that the annihilation operators go to the right. By an inter-
change of two fermion operators add a minus sign, by interchange of two boson operators not. Assume
hereby that all commutators are zero.
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15.8 Quantization of the electromagnetic field

Starting with the Lagrange density L = − 12
∂Aν

∂xµ

∂Aν

∂xµ

it follows for the field operators A(x):

A(x) =
1√
V

∑
�k

1√
2ωk

4∑
m=1

(
am(�k )εm(�k )eikx + a†(�k )εm(�k )∗e−ikx

)

The operators obey [am(�k ), a
†
m′(�k )] = δmm′δkk′ . All other commutators are 0. m gives the polarization

direction of the photon: m = 1, 2 gives transversal polarized, m = 3 longitudinal polarized and m = 4
timelike polarized photons. Further holds:

[Aµ(x), Aν (x′)] = iδµνD(x− x′) with D(y) = ∆(y)|m=0
In spite of the fact that A4 = iV is imaginary in the classical case, A4 is still defined to be hermitian be-
cause otherwise the sign of the energy becomes incorrect. By changing the definition of the inner product in
configuration space the expectation values for A1,2,3(x) ∈ IR and for A4(x) become imaginary.

If the potentials satisfy the Lorentz gauge condition ∂µAµ = 0 the E and B operators derived from these
potentials will satisfy the Maxwell equations. However, this gives problems with the commutation rules. It is
now demanded that only those states are permitted for which holds

∂A+µ
∂xµ

|Φ〉 = 0

This results in:

〈
∂Aµ

∂xµ

〉
= 0.

From this follows that (a3(�k ) − a4(�k ))|Φ〉 = 0. With a local gauge transformation one obtains N3(�k ) = 0
and N4(�k ) = 0. However, this only applies to free EM-fields: in intermediary states in interactions there
can exist longitudinal and timelike photons. These photons are also responsible for the stationary Coulomb
potential.

15.9 Interacting fields and the S-matrix

The S(scattering)-matrix gives a relation between the initial and final states of an interaction: |Φ(∞)〉 =
S|Φ(−∞)〉. If the Schrödinger equation is integrated:

|Φ(t)〉 = |Φ(−∞)〉 − i

t∫
−∞

Hint(t1)|Φ(t1)〉dt1

and perturbation theory is applied one finds that:

S =
∞∑
n=0

(−i)n

n!

∫
· · ·
∫

T {Hint(x1) · · ·Hint(xn)} d4x1 · · · d4xn ≡
∞∑
n=0

S(n)

Here, the T -operator means a time-ordered product: the terms in such a product must be ordered in increasing
time order from the right to the left so that the earliest terms act first. The S-matrix is then given by: S ij =
〈Φi|S|Φj〉 = 〈Φi|Φ(∞)〉.
The interaction Hamilton density for the interaction between the electromagnetic and the electron-positron
field is: Hint(x) = −Jµ(x)Aµ(x) = ieN(ψγµψAµ)

When this is expanded as: Hint = ieN
(
(ψ+ + ψ−)γµ(ψ+ + ψ−)(A+µ +A−

µ )
)
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eight terms appear. Each term corresponds with a possible process. The term ieψ +γµψ
+A−

µ acting on |Φ〉
gives transitions where A−

µ creates a photon, ψ+ annihilates an electron and ψ+ annihilates a positron. Only
terms with the correct number of particles in the initial and final state contribute to a matrix element 〈Φ i|S|Φj〉.
Further the factors in Hint can create and thereafter annihilate particles: the virtual particles.

The expressions for S (n) contain time-ordered products of normal products. This can be written as a sum of
normal products. The appearing operators describe the minimal changes necessary to change the initial state
into the final state. The effects of the virtual particles are described by the (anti)commutator functions. Some
time-ordened products are:

T {Φ(x)Φ(y)} = N {Φ(x)Φ(y)} + 1
2∆

F(x− y)

T
{
ψα(x)ψβ(y)

}
= N

{
ψα(x)ψβ(y)

}
− 1
2S
F
αβ(x− y)

T {Aµ(x)Aν (y)} = N {Aµ(x)Aν (y)}+ 1
2δµνD

F
µν(x− y)

Here, SF(x) = (γµ∂µ −M)∆F(x), DF(x) = ∆F(x)|m=0 and

∆F(x) =




1
(2π)3

∫
eikx

ω�k
d3k if x0 > 0

1
(2π)3

∫
e−ikx

ω�k
d3k if x0 < 0

The term 1
2∆

F(x − y) is called the contraction of Φ(x) and Φ(y), and is the expectation value of the time-
ordered product in the vacuum state. Wick’s theorem gives an expression for the time-ordened product of
an arbitrary number of field operators. The graphical representation of these processes are called Feynman
diagrams. In the x-representation each diagram describes a number of processes. The contraction functions
can also be written as:

∆F(x) = lim
ε→0

−2i
(2π)4

∫
eikx

k2 +m2 − iε
d4k and SF(x) = lim

ε→0
−2i
(2π)4

∫
eipx

iγµpµ −M

p2 +M2 − iε
d4p

In the expressions for S (2) this gives rise to terms δ(p+ k − p′ − k′). This means that energy and momentum
is conserved. However, virtual particles do not obey the relation between energy and momentum.

15.10 Divergences and renormalization

It turns out that higher orders contribute infinite terms because only the sum p + k of the four-momentum of
the virtual particles is fixed. An integration over one of them becomes ∞. In the x-representation this can
be understood because the product of two functions containing δ-like singularities is not well defined. This is
solved by discounting all divergent diagrams in a renormalization of e and M . It is assumed that an electron, if
there would not be an electromagnetical field, would have a mass M 0 and a charge e0 unequal to the observed
mass M and charge e. In the Hamilton and Lagrange density of the free electron-positron field appears M 0.
So this gives, with M =M0 +∆M :

Le−p(x) = −ψ(x)(γµ∂µ +M0)ψ(x) = −ψ(x)(γµ∂µ +M)ψ(x) + ∆Mψ(x)ψ(x)

and Hint = ieN(ψγµψAµ)− i∆eN(ψγµψAµ).

15.11 Classification of elementary particles

Elementary particles can be categorized as follows:

1. Hadrons: these exist of quarks and can be categorized in:

I. Baryons: these exist of 3 quarks or 3 antiquarks.
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II. Mesons: these exist of one quark and one antiquark.

2. Leptons: e±, µ±, τ±, νe, νµ, ντ , νe, νµ, ντ .

3. Field quanta: γ, W±, Z0, gluons, gravitons (?).

4. Higgs particle: φ.

An overview of particles and antiparticles is given in the following table:

Particle spin (h̄) B L T T3 S C B∗ charge (e) m0 (MeV) antipart.

u 1/2 1/3 0 1/2 1/2 0 0 0 +2/3 5 u
d 1/2 1/3 0 1/2 −1/2 0 0 0 −1/3 9 d
s 1/2 1/3 0 0 0 −1 0 0 −1/3 175 s
c 1/2 1/3 0 0 0 0 1 0 +2/3 1350 c
b 1/2 1/3 0 0 0 0 0 −1 −1/3 4500 b
t 1/2 1/3 0 0 0 0 0 0 +2/3 173000 t

e− 1/2 0 1 0 0 0 0 0 −1 0.511 e+

µ− 1/2 0 1 0 0 0 0 0 −1 105.658 µ+

τ− 1/2 0 1 0 0 0 0 0 −1 1777.1 τ +

νe 1/2 0 1 0 0 0 0 0 0 0(?) ν e
νµ 1/2 0 1 0 0 0 0 0 0 0(?) ν µ

ντ 1/2 0 1 0 0 0 0 0 0 0(?) ν τ
γ 1 0 0 0 0 0 0 0 0 0 γ

gluon 1 0 0 0 0 0 0 0 0 0 gluon
W+ 1 0 0 0 0 0 0 0 +1 80220 W−

Z 1 0 0 0 0 0 0 0 0 91187 Z
graviton 2 0 0 0 0 0 0 0 0 0 graviton
Higgs 0 0 0 0 0 0 0 0 0 125600 Higgs

Here B is the baryon number and L the lepton number. It is found that there are three different lepton numbers,
one for e, µ and τ , which are separately conserved. T is the isospin, with T 3 the projection of the isospin on
the third axis, C the charmness, S the strangeness and B∗ the bottomness. The anti particles have quantum
numbers with the opposite sign except for the total isospin T. The composition of (anti)quarks of the hadrons
is given in the following table, together with their mass in MeV in their ground state:

π0 1
2

√
2(uu+dd) 134.9764 J/Ψ cc 3096.8 Σ+ d d s 1197.436

π+ ud 139.56995 Υ bb 9460.37 Ξ0 u s s 1314.9

π− du 139.56995 p+ u u d 938.27231 Ξ
0

u s s 1314.9
K0 sd 497.672 p− u u d 938.27231 Ξ− d s s 1321.32
K0 ds 497.672 n0 u d d 939.56563 Ξ+ d s s 1321.32
K+ us 493.677 n0 u d d 939.56563 Ω− s s s 1672.45
K− su 493.677 Λ u d s 1115.684 Ω+ s s s 1672.45
D+ cd 1869.4 Λ u d s 1115.684 Λ+c u d c 2285.1
D− dc 1869.4 Σ+ u u s 1189.37 ∆2− u u u 1232.0
D0 cu 1864.6 Σ− u u s 1189.37 ∆2+ u u u 1232.0
D0 uc 1864.6 Σ0 u d s 1192.55 ∆+ u u d 1232.0
F+ cs 1969.0 Σ0 u d s 1192.55 ∆0 u d d 1232.0
F− sc 1969.0 Σ− d d s 1197.436 ∆− d d d 1232.0

Each quark can exist in two spin states. So mesons are bosons with spin 0 or 1 in their ground state, while
baryons are fermions with spin 1

2 or 32 . There exist excited states with higher internal L. Neutrino’s have a
helicity of − 12 while antineutrino’s have only + 12 as possible value.

The quantum numbers are subject to conservation laws. These can be derived from symmetries in the La-
grange density: continuous symmetries give rise to additive conservation laws, discrete symmetries result in
multiplicative conservation laws.

Geometrical conservation lawsare invariant under Lorentz transformations and the CPT-operation. These are:
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1. Mass/energy because the laws of nature are invariant for translations in time.

2. Momentum because the laws of nature are invariant for translations in space.

3. Angular momentum because the laws of nature are invariant for rotations.

Dynamical conservation lawsare invariant under the CPT-operation. These are:

1. Electrical charge because the Maxwell equations are invariant under gauge transformations.

2. Colour charge is conserved.

3. Isospin because QCD is invariant for rotations in T-space.

4. Baryon number and lepton number are conserved but not under a possible SU(5) symmetry of the laws
of nature.

5. Quarks type is only conserved under the colour interaction.

6. Parity is conserved except for weak interactions.

The elementary particles can be classified into three families:

leptons quarks antileptons antiquarks

1st generation e− d e+ d
νe u νe u

2nd generation µ− s µ+ s
νµ c νµ c

3rd generation τ− b τ+ b
ντ t ντ t

Quarks exist in three colours but because they are confinedthese colours cannot be seen directly. The color
force does not decrease with distance. The potential energy will become high enough to create a quark-
antiquark pair when it is tried to disjoin an (anti)quark from a hadron. This will result in two hadrons and not
in free quarks.

15.12 P and CP-violation

It is found that the weak interaction violates P-symmetry, and even CP-symmetry is not conserved. Some
processes which violate P symmetry but conserve the combination CP are:

1. µ-decay: µ− → e−+ νµ+ νe. Left-handed electrons appear more than 1000× as much as right-handed
ones.

2. β-decay of spin-polarized 60Co: 60Co→60 Ni + e− + νe. More electrons with a spin parallel to the Co
than with a spin antiparallel are created: (parallel−antiparallel)/(total)=20%.

3. There is no connection with the neutrino: the decay of the Λ particle through: Λ → p + + π− and
Λ→ n0 + π0 has also these properties.

The CP-symmetry was found to be violated by the decay of neutral Kaons. These are the lowest possible states
with a s-quark so they can decay only weakly. The following holds: C|K 0〉 = η|K0〉 where η is a phase factor.
Further holds P|K0〉 = −|K0〉 because K0 and K0 have an intrinsic parity of −1. From this follows that K0

and K0 are not eigenvalues of CP: CP|K0〉 = |K0〉. The linear combinations

|K01〉 := 1
2

√
2(|K0〉+ |K0〉) and |K02〉 := 1

2

√
2(|K0〉 − |K0〉)

are eigenstates of CP: CP|K01〉 = +|K01〉 and CP|K02〉 = −|K02〉. A base of K01 and K02 is practical while
describing weak interactions. For colour interactions a base ofK 0 andK0 is practical because then the number
u−number u is constant. The expansion postulate must be used for weak decays:

|K0〉 = 1
2 (〈K01|K0〉+ 〈K02|K0〉)
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The probability to find a final state with CP= −1 is 1
2 |
〈
K02|K0

〉 |2, the probability of CP=+1 decay is
1
2 |
〈
K01|K0

〉 |2.
The relation between the mass eigenvalues of the quarks (unaccented) and the fields arising in the weak currents
(accented) is (u′, c′, t′) = (u, c, t), and:

 d′

s′

b′


 =


 1 0 0
0 cos θ2 sin θ2
0 − sin θ2 cos θ2




 1 0 0
0 1 0
0 0 eiδ




 cos θ1 sin θ1 0

− sin θ1 cos θ1 0
0 0 1





 1 0 0
0 cos θ3 sin θ3
0 − sin θ3 cos θ3




 d

s
b




θ1 ≡ θC is the Cabibbo angle: sin(θC) ≈ 0.23± 0.01.

15.13 The standard model

When one wants to make the Lagrange density which describes a field invariant for local gauge transformations
from a certain group, one has to perform the transformation

∂

∂xµ
→ D

Dxµ
=

∂

∂xµ
− i

g

h̄
LkA

k
µ

Here the Lk are the generators of the gauge group (the “charges”) and the A k
µ are the gauge fields. g is the

matching coupling constant. The Lagrange density for a scalar field becomes:

L = − 12 (DµΦ∗DµΦ +M2Φ∗Φ)− 1
4F

a
µνF

µν
a

and the field tensors are given by: F a
µν = ∂µA

a
ν − ∂νA

a
µ + gcalmAl

µA
m
ν .

15.13.1 The electroweak theory

The electroweak interaction arises from the necessity to keep the Lagrange density invariant for local gauge
transformations of the group SU(2)⊗U(1). Right- and left-handed spin states are treated different because the
weak interaction does not conserve parity. If a fifth Dirac matrix is defined by:

γ5 := γ1γ2γ3γ4 = −



0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0




the left- and right- handed solutions of the Dirac equation for neutrino’s are given by:

ψL = 1
2 (1 + γ5)ψ and ψR = 1

2 (1 − γ5)ψ

It appears that neutrino’s are always left-handed while antineutrino’s are always right-handed. The hypercharge
Y , for quarks given by Y = B+ S + C+ B∗ +T′, is defined by:

Q = 1
2Y + T3

so [Y, Tk] = 0. The group U(1)Y⊗SU(2)T is taken as symmetry group for the electroweak interaction because
the generators of this group commute. The multiplets are classified as follows:

e−R νeL e−L uL d′
L uR dR

T 0 1
2

1
2 0 0

T3 0 1
2 − 1

2
1
2 − 1

2 0 0

Y −2 −1 1
3

4
3 − 23
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Now, 1 field Bµ(x) is connected with gauge group U(1) and 3 gauge fields �Aµ(x) are connected with SU(2).
The total Lagrange density (minus the fieldterms) for the electron-fermion field now becomes:

L0,EW = −(ψνe,L, ψeL)γµ
(
∂µ − i

g

h̄
�Aµ · (12�σ)− 1

2 i
g′

h̄
Bµ · (−1)

)(
ψνe,L

ψeL

)
−

ψeRγ
µ

(
∂µ − 1

2 i
g′

h̄
(−2)Bµ

)
ψeR

Here, 12�σ are the generators of T and−1 and −2 the generators of Y .

15.13.2 Spontaneous symmetry breaking: the Higgs mechanism

All leptons are massless in the equations above. Their mass is probably generated by spontaneous symmetry
breaking. This means that the dynamic equations which describe the system have a symmetry which the ground
state does not have. It is assumed that there exists an isospin-doublet of scalar fields Φ with electrical charges
+1 and 0 and potential V (Φ) = −µ2Φ∗Φ + λ(Φ∗Φ)2. Their antiparticles have charges −1 and 0. The extra
terms in L arising from these fields, LH = (DLµΦ)∗(D

µ
LΦ) − V (Φ), are globally U(1)⊗SU(2) symmetric.

Hence the state with the lowest energy corresponds with the state Φ∗(x)Φ(x) = v = µ2/2λ =constant.
The field can be written (were ω± and z are Nambu-Goldstone bosons which can be transformed away, and
mφ = µ

√
2) as:

Φ =
(
Φ+

Φ0

)
=
(

iω+

(v + φ− iz)/
√
2

)
and 〈0|Φ|0〉 =

(
0

v/
√
2

)
Because this expectation value �= 0 the SU(2) symmetry is broken but the U(1) symmetry is not. When the
gauge fields in the resulting Lagrange density are separated one obtains:

W−
µ = 1

2

√
2(A1µ + iA2µ) , W+

µ = 1
2

√
2(A1µ − iA2µ)

Zµ =
gA3µ − g′Bµ√

g2 + g′2
≡ A3µ cos(θW)−Bµ sin(θW)

Aµ =
g′A3µ + gBµ√

g2 + g′2
≡ A3µ sin(θW) +Bµ cos(θW)

where θW is called the Weinberg angle. For this angle holds: sin2(θW) = 0.255 ± 0.010. Relations for the
masses of the field quanta can be obtained from the remaining terms: MW = 1

2vg and MZ = 1
2v
√

g2 + g′2,

and for the elementary charge holds: e =
gg′√

g2 + g′2
= g′ cos(θW) = g sin(θW)

Experimentally it is found that MW = 80.022± 0.26 GeV/c2 and MZ = 91.187± 0.007 GeV/c2. According
to the weak theory this should be: MW = 83.0± 0.24 GeV/c2 and MZ = 93.8± 2.0 GeV/c2.

15.13.3 Quantumchromodynamics

Coloured particles interact because the Lagrange density is invariant for the transformations of the group SU(3)
of the colour interaction. A distinction can be made between two types of particles:

1. “White” particles: they have no colour charge, the generator �T = 0.

2. “Coloured” particles: the generators �T are 8 3 × 3 matrices. There exist three colours and three anti-
colours.

The Lagrange density for coloured particles is given by

LQCD = i
∑
k

Ψkγ
µDµΨk +

∑
k,l

ΨkMklΨl − 1
4F

a
µνF

µν
a

The gluons remain massless because this Lagrange density does not contain spinless particles. Because left-
and right- handed quarks now belong to the same multiplet a mass term can be introduced. This term can be
brought in the form Mkl = mkδkl.
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15.14 Path integrals

The development in time of a quantum mechanical system can, besides with Schrödingers equation, also be
described by a path integral(Feynman):

ψ(x′, t′) =
∫

F (x′, t′, x, t)ψ(x, t)dx

in which F (x′, t′, x, t) is the amplitude of probability to find a system on time t ′ in x′ if it was in x on time t.
Then,

F (x′, t′, x, t) =
∫
exp
(
iS[x]
h̄

)
d[x]

where S[x] is an action-integral: S[x] =
∫
L(x, ẋ, t)dt. The notation d[x] means that the integral has to be

taken over all possible paths [x]:

∫
d[x] := lim

n→∞
1
N

∏
n




∞∫
−∞

dx(tn)




in which N is a normalization constant. To each path is assigned a probability amplitude exp(iS/h̄). The
classical limit can be found by taking δS = 0: the average of the exponent vanishes, except where it is
stationary. In quantum fieldtheory, the probability of the transition of a fieldoperator Φ(�x,−∞) to Φ ′(�x,∞)
is given by

F (Φ′(�x,∞),Φ(�x,−∞)) =
∫
exp
(
iS[Φ]
h̄

)
d[Φ]

with the action-integral

S[Φ] =
∫
Ω

L(Φ, ∂νΦ)d4x

15.15 Unification and quantum gravity

The strength of the forces varies with energy and the reciprocal coupling constants approach each other with
increasing energy. The SU(5) model predicts complete unification of the electromagnetical, weak and colour
forces at 1015GeV. It also predicts 12 extra X bosons which couple leptons and quarks and are i.g. responsible
for proton decay, with dominant channel p+ → π0 + e+, with an average lifetime of the proton of 1031 year.
This model has been experimentally falsified.

Supersymmetric models assume a symmetry between bosons and fermions and predict partners for the cur-
rently known particles with a spin which differs 12 . The supersymmetric SU(5) model predicts unification at
1016GeV and an average lifetime of the proton of 1033 year. The dominant decay channels in this theory are
p+ → K+ + νµ and p+ → K0 + µ+.

Quantum gravity plays only a role in particle interactions at the Planck dimensions, where λ C ≈ RS: mPl =√
hc/G = 3 · 1019 GeV, tPl = h/mPlc

2 =
√

hG/c5 = 10−43 sec and rPl = ctPl ≈ 10−35 m.
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Astrophysics

16.1 Determination of distances

The parallax is mostly used to determine distances in nearby space. The parallax is the angular difference
between two measurements of the position of the object from different view-points. If the annual parallax is
given by p, the distance R of the object is given by R = a/ sin(p), in which a is the radius of the Earth’s orbit.
The clusterparallaxis used to determine the distance of a group of stars by using their motion w.r.t. a fixed
background. The tangential velocity v t and the radial velocity vr of the stars along the sky are given by

vr = V cos(θ) , vt = V sin(θ) = ωR

where θ is the angle between the star and the point of convergenceand R̂ the
distance in pc. This results, with vt = vr tan(θ), in:

R =
vr tan(θ)

ω
⇒ R̂ =

1′′

p

where p is the parallax in arc seconds. The parallax is then given by

p =
4.74µ

vr tan(θ)

RR-Lyrae

Type 2

Type 1

0,1 0,3 1 3 10 30 100
1

0

-1

-2

-3

-4

-5

P (days)→

〈M〉

with µ de proper motion of the star in ′′/yr. A method to determine the distance of objects which are somewhat
further away, like galaxies and star clusters, uses the period-Brightness relation for Cepheids. This relation is
shown in the above figure for different types of stars.

16.2 Brightness and magnitudes

The brightnessis the total radiated energy per unit of time. Earth receives s 0 = 1.374 kW/m2 from the Sun.
Hence, the brightness of the Sun is given by L� = 4πr2s0 = 3.82 · 1026 W. It is also given by:

L� = 4πR2�

∞∫
0

πFνdν

where πFν is the monochromatic radiation flux. At the position of an observer this is πf ν , with fν = (R/r)2Fν

if absorption is ignored. If Aν is the fraction of the flux which reaches Earth’s surface, the transmission factor
is given by Rν and the surface of the detector is given by πa2, then the apparent brightness b is given by:

b = πa2
∞∫
0

fνAνRνdν

The magnitudem is defined by:

b1
b2
= (100)

1
5 (m2−m1) = (2.512)m2−m1
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because the human eye perceives lightintensities logaritmical. From this follows that m 2 − m1 = 2.5 ·10
log(b1/b2), or: m = −2.5 ·10 log(b) + C. The apparent brightness of a star if this star would be at a distance
of 10 pc is called the absolute brightnessB: B/b = (r̂/10)2. The absolute magnitude is then given by
M = −2.5 ·10 log(B)+C, or: M = 5+m−5 ·10 log(r̂). When an interstellar absorption of 10−4/pc is taken
into account one finds:

M = (m− 4 · 10−4r̂) + 5− 5 ·10 log(r̂)
If a detector detects all radiation emitted by a source one would measure the absolute bolometric magnitude.
If the bolometric correctionBC is given by

BC = 2.5 ·10 log
(

Energy flux received
Energy flux detected

)
= 2.5 ·10 log

( ∫
fνdν∫

fνAνRνdν

)

holds: Mb =MV −BC where MV is the visual magnitude. Further holds

Mb = −2.5 ·10 log
(

L

L�

)
+ 4.72

16.3 Radiation and stellar atmospheres

The radiation energy passing through a surface dA is dE = Iν(θ, ϕ) cos(θ)dνdΩdAdt, where Iµ is the
monochromatical intensity[Wm−2sr−1Hz−1]. When there is no absorption the quantity Iν is independent
of the distance to the source. Planck’s law holds for a black body:

Iν(T ) ≡ Bν(T ) =
c

4π
wν(T ) =

2hν3

c2
1

exp(hν/kT )− 1
The radiation transport through a layer can then be written as:

dIν
ds

= −Iνκν + jν

Here, jν is the coefficient of emissionand κν the coefficient of absorption.
∫
ds is the thickness of the layer.

The optical thicknessτν of the layer is given by τν =
∫
κνds. The layer is optically thin if τν � 1, the layer

is optically thick if τν � 1. For a stellar atmosphere in LTE holds: jν = κνBν(T ). Then also holds:

Iν(s) = Iν(0)e−τν +Bν(T )(1− e−τν )

16.4 Composition and evolution of stars

The structure of a star is described by the following equations:

dM(r)
dr

= 4π3(r)r2

dp(r)
dr

= −GM(r)3(r)
r2

L(r)
dr

= 4π3(r)ε(r)r2(
dT (r)
dr

)
rad

= −3
4
L(r)
4πr2

κ(r)
4σT 3(r)

, (Eddington), or(
dT (r)
dr

)
conv

=
T (r)
p(r)

γ − 1
γ

dp(r)
dr

, (convective energy transport)

Further, for stars of the solar type, the composing plasma can be described as an ideal gas:

p(r) =
3(r)kT (r)

µmH
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where µ is the average molecular mass, usually well approximated by:

µ =
3

nmH
=

1
2X + 3

4Y + 1
2Z

where X is the mass fraction of H, Y the mass fraction of He and Z the mass fraction of the other elements.
Further holds:

κ(r) = f(3(r), T (r), composition) and ε(r) = g(3(r), T (r), composition)

Convection will occur when the star meets the Schwartzschild criterium:(
dT

dr

)
conv

<

(
dT

dr

)
rad

Otherwise the energy transfer takes place by radiation. For stars in quasi-hydrostatic equilibrium hold the
approximations r = 1

2R, M(r) = 1
2M , dM/dr = M/R, κ ∼ 3 and ε ∼ 3T µ (this last assumption is only

valid for stars on the main sequence). For pp-chains holds µ ≈ 5 and for the CNO chains holds µ = 12 tot 18.
It can be derived that L ∼ M 3: the mass-brightness relation. Further holds: L ∼ R4 ∼ T 8eff . This results in
the equation for the main sequence in the Hertzsprung-Russel diagram:

10 log(L) = 8 ·10 log(Teff) + constant

16.5 Energy production in stars

The net reaction from which most stars gain their energy is: 4 1H→ 4He + 2e+ + 2νe + γ.
This reaction produces 26.72 MeV. Two reaction chains are responsible for this reaction. The slowest, speed-
limiting reaction is shown in boldface. The energy between brackets is the energy carried away by the neutrino.

1. The proton-proton chain can be divided into two subchains:
1H + p+ → 2D + e+ + νe, and then 2D+ p→ 3He + γ.

I. pp1: 3He +3 He→ 2p+ + 4He. There is 26.21 + (0.51) MeV released.

II. pp2: 3He + α → 7Be + γ

i. 7Be + e− → 7Li + ν, then 7Li + p+ → 24He + γ. 25.92 + (0.80) MeV.

ii. 7Be + p+ → 8B + γ, then 8B+ e+ → 24He + ν. 19.5 + (7.2) MeV.

Both 7Be chains become more important with raising T .

2. The CNO cycle. The first chain releases 25.03 + (1.69) MeV, the second 24.74 + (1.98) MeV. The
reactions are shown below.

−→ ↘
↗ → 15N+ p+ → α+12 C 15N+ p+ → 16O+ γ

↓ ↓
15O+ e+ → 15N+ ν 12C+ p+ → 13N+ γ 16O+ p+ → 17F+ γ

↑ ↓ ↓
14N + p+ → 15O + γ 13N→ 13C + e+ + ν 17F→ 17O+ e+ + ν

↓ ↓
↖ ← 13C+ p+ → 14N+ γ 17O+ p+ → α+ 14N

←− ↙
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The ∇-operator

In cartesian coordinates (x, y, z) holds:

�∇ =
∂

∂x
�ex +

∂

∂y
�ey +

∂

∂z
�ez , gradf = �∇f =

∂f

∂x
�ex +

∂f

∂y
�ey +

∂f

∂z
�ez

div �a = �∇ · �a = ∂ax
∂x

+
∂ay
∂y

+
∂az
∂z

, ∇2f = ∂2f

∂x2
+

∂2f

∂y2
+

∂2f

∂z2

rot �a = �∇× �a =
(
∂az
∂y

− ∂ay
∂z

)
�ex +

(
∂ax
∂z

− ∂az
∂x

)
�ey +

(
∂ay
∂x

− ∂ax
∂y

)
�ez

In cylinder coordinates (r, ϕ, z) holds:

�∇ =
∂

∂r
�er +

1
r

∂

∂ϕ
�eϕ +

∂

∂z
�ez , gradf =

∂f

∂r
�er +

1
r

∂f

∂ϕ
�eϕ +

∂f

∂z
�ez

div �a =
∂ar
∂r

+
ar
r
+
1
r

∂aϕ
∂ϕ

+
∂az
∂z

, ∇2f = ∂2f

∂r2
+
1
r

∂f

∂r
+
1
r2

∂2f

∂ϕ2
+

∂2f

∂z2

rot �a =
(
1
r

∂az
∂ϕ

− ∂aϕ
∂z

)
�er +

(
∂ar
∂z

− ∂az
∂r

)
�eϕ +

(
∂aϕ
∂r

+
aϕ
r
− 1

r

∂ar
∂ϕ

)
�ez

In spherical coordinates (r, θ, ϕ) holds:

�∇ =
∂

∂r
�er +

1
r

∂

∂θ
�eθ +

1
r sin θ

∂

∂ϕ
�eϕ

gradf =
∂f

∂r
�er +

1
r

∂f

∂θ
�eθ +

1
r sin θ

∂f

∂ϕ
�eϕ

div �a =
∂ar
∂r

+
2ar
r
+
1
r

∂aθ
∂θ

+
aθ

r tan θ
+

1
r sin θ

∂aϕ
∂ϕ

rot �a =
(
1
r

∂aϕ
∂θ

+
aθ

r tan θ
− 1

r sin θ
∂aθ
∂ϕ

)
�er +

(
1

r sin θ
∂ar
∂ϕ

− ∂aϕ
∂r

− aϕ
r

)
�eθ +(

∂aθ
∂r

+
aθ
r
− 1

r

∂ar
∂θ

)
�eϕ

∇2f =
∂2f

∂r2
+
2
r

∂f

∂r
+
1
r2

∂2f

∂θ2
+

1
r2 tan θ

∂f

∂θ
+

1
r2 sin2 θ

∂2f

∂ϕ2

General orthonormal curvelinear coordinates (u, v, w) can be obtained from cartesian coordinates by the trans-
formation �x = �x(u, v, w). The unit vectors are then given by:

�eu =
1
h1

∂�x

∂u
, �ev =

1
h2

∂�x

∂v
, �ew =

1
h3

∂�x

∂w

where the factors hi set the norm to 1. Then holds:

gradf =
1
h1

∂f

∂u
�eu +

1
h2

∂f

∂v
�ev +

1
h3

∂f

∂w
�ew

div �a =
1

h1h2h3

(
∂

∂u
(h2h3au) +

∂

∂v
(h3h1av) +

∂

∂w
(h1h2aw)

)

rot �a =
1

h2h3

(
∂(h3aw)

∂v
− ∂(h2av)

∂w

)
�eu +

1
h3h1

(
∂(h1au)

∂w
− ∂(h3aw)

∂u

)
�ev +

1
h1h2

(
∂(h2av)

∂u
− ∂(h1au)

∂v

)
�ew

∇2f =
1

h1h2h3

[
∂

∂u

(
h2h3
h1

∂f

∂u

)
+

∂

∂v

(
h3h1
h2

∂f

∂v

)
+

∂

∂w

(
h1h2
h3

∂f

∂w

)]
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The SI units

Basic units
Quantity Unit Sym.

Length metre m
Mass kilogram kg
Time second s
Therm. temp. kelvin K
Electr. current ampere A
Luminous intens. candela cd
Amount of subst. mol mol

Extra units
Plane angle radian rad
solid angle sterradian sr

Derived units with special names
Quantity Unit Sym. Derivation

Frequency hertz Hz s−1

Force newton N kg ·m · s−2
Pressure pascal Pa N ·m−2

Energy joule J N ·m
Power watt W J · s−1
Charge coulomb C A · s
El. Potential volt V W · A−1

El. Capacitance farad F C ·V−1

El. Resistance ohm Ω V · A−1

El. Conductance siemens S A ·V−1

Mag. flux weber Wb V · s
Mag. flux density tesla T Wb ·m−2

Inductance henry H Wb · A−1

Luminous flux lumen lm cd · sr
Illuminance lux lx lm ·m−2

Activity bequerel Bq s−1

Absorbed dose gray Gy J · kg−1
Dose equivalent sievert Sv J · kg−1

Prefixes

yotta Y 1024 giga G 109 deci d 10−1 pico p 10−12

zetta Z 1021 mega M 106 centi c 10−2 femto f 10−15

exa E 1018 kilo k 103 milli m 10−3 atto a 10−18

peta P 1015 hecto h 102 micro µ 10−6 zepto z 10−21

tera T 1012 deca da 10 nano n 10−9 yocto y 10−24


